16
Views
70
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Fibroblast Growth Factor Receptor-Mediated Rescue of x-Ephrin B1-Induced Cell Dissociation in XenopusEmbryos

, , , &
Pages 724-734 | Received 06 Aug 1999, Accepted 14 Oct 1999, Published online: 28 Mar 2023

REFERENCES

  • Adams, R. H., Wilkinson, G. A., Weiss, C., Diella, F., Gale, N. W., Deutsch, U., Risau, W., and Klein, R.. 1999. Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13:295–306
  • Amaya, E., Stern, P. A., Musci, T. J., and Kirschner, M. W.. 1993. FGF signalling in the early specification of mesoderm in Xenopus. Development 118:477–487
  • Ataliotis, K., Symes, M., Chou, M., Ho, L., and Mercola, M.. 1995. PDGF signalling is required for gastrulation of Xenopus laevis. Development 121:3099–3110
  • Becker, N., Seitanidou, T., Murphy, P., Mattei, M.-G., Topilko, P., Nieto, M., Wilkinson, D. G., Charnay, P., and Gilardi-Hebenstreit, P.. 1994. Several receptor tyrosine kinase genes of the Eph family are segmentally expressed in the developing hindbrain. Mech. Dev. 47:3–17
  • Bergemann, A. D., Cheng, H.-J., Brambilla, R., Klein, R., and Flanagan, J. G.. 1995. Elf-2, a new member of the Eph ligand family, is segmentally expressed in the region of the hindbrain and newly formed somites. Mol. Cell. Biol. 15:4921–4929
  • Bruckner, K., Pasquale, E. B., and Klein, R.. 1997. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275:1640–1643
  • Castellani, V., Yue, Y., Zhou, R., and Bolz, J.. 1998. Dual action of a ligand for the Eph receptor tyrosine kinases on specific populations of axons during development of cortical circuits. J. Neurosci. 18:4663–4672
  • Cheng, H.-J., Nakamoto, M., Bergemann, A. D., and Flanagan, J. G.. 1995. Complementary gradients in expression and binding of Elf1 and Mek4 in development of the topographic retinotectal projection map. Cell 82:371–381
  • Chiba, A., and Keshishian, H.. 1996. Neuronal pathfinding and recognition: roles of cell adhesion molecules. Dev. Biol. 180:424–432
  • Cook, G., Tannahill, D., and Keynes, R.. 1998. Axon guidance to and from choice points. Curr. Opin. Neurobiol. 8:64–72
  • Culotti, J. G., and Merz, D. C.. 1998. DCC and netrins. Curr. Opin. Cell Biol. 10:609–613
  • Davis, S., Gale, N. W., Aldrich, T. H., Masonpierre, P. C., Lhotak, V., Pawson, T., Goldfarb, M., and Yancopoulos, G. D.. 1994. Ligands for EPH-related tyrosine kinases that require membrane attachment or clustering for activity. Science 266:816–819
  • Desai, C. J., Gindhart, J. G., Goldstein, L. S., and Zinn, K.. 1996. Receptor tyrosine phosphatases are required for motor axon guidance in the Drosphila embryo. Cell 84:599–609
  • Devore, D. L., Horvitz, H. R., and Stern, M. J.. 1995. An FGF receptor signaling pathway is required for the normal cell migrations of the sex myoblasts in C. elegans hermaphrodites. Cell 83:611–620
  • Doherty, P., and Walsh, F. S.. 1996. CAM-FGF receptor interactions: a model for axonal growth. Mol. Cell. Neurosci. 8:99–111
  • Dono, R., Texido, G., Dussel, R., Ehmke, H., and Zoller, R.. 1998. Impaired cerebral cortex development and blood pressure regulation in FGF-2 deficient mice. EMBO J. 17:4213–4225
  • Drescher, U., Kremoser, C., Handwerker, C., Loschinger, J., Noda, M., and Bonehoeffer, F.. 1995. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Cell 82:359–370
  • Drescher, U.. 1997. The Eph family in the patterning of neural development. Curr. Biol. 7:799–807
  • Durbin, L., Brennan, C., Shiomi, K., Cooke, J., Barrios, A., Shamugalingam, S., Guthrie, B., Lindberg, R., and Holder, N.. 1998. Eph signaling is required for segmentation and differentiation of the somites. Genes Dev. 12:3096–3109
  • Fagotto, F., and Gumbiner, B. M.. 1996. Cell contact-dependent signaling. Dev. Biol. 180:445–454
  • Gale, N. W., Holland, S. J., Valenzuela, D. M., Flenniken, A., Pan, L., Ryan, T. E., Henkemeyer, M., Strebhardt, K., Hirai, H., Wilkinson, D. G. et al. 1996. Eph receptors and ligands comprise two major specificity subclasses, and are reciprocally compartmentalized during embryogenesis. Neuron. 17:9–19
  • Gale, N. W., and Yancopoulas, G. D.. 1997. Ephrins and their receptors: a repulsive topic? Cell Tissue Res. 290:227–242
  • Ganju, P., Shigemoto, K., Brennan, L., Entwistle, A., and Reith, A. D.. 1994. The Eck receptor tyrosine kinase is implicated in pattern formation during gastrulation, hindbrain segmentation and limb development. Oncogene 9:1613–1624
  • Gao, P.-P., Zhang, J. H., Yokoyama, M., Racey, B., Dreyfus, C. F., Black, I. B., and Zhou, R.. 1996. Regulation of topographic projection in the brain: Elf-1 in the hippocamposeptal system. Proc. Natl. Acad. Sci. USA 93:11161–11166
  • George, S. E., Simokat, K., Hardin, J., and Chisholm, A. D.. 1998. The Vab-1 eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell 92:633–643
  • Gisselbrecht, S., Sheath, J. B., Doe, C. Q., and Michelson, A. M.. 1996. Heartless, encodes a fibroblast growth factor receptor (DFR1/DFGF-R2) involved in the directional migration of early mesodermal cells in the Drosophila embryo. Genes Dev. 10:3003–3017
  • Gotoh, Y., Matsuda, S., Tanaka, K., Hattori, S., Iwamatsu, A., Ishikawa, M., Kosako, H., and Nishida, E.. 1994. Characterization of recombinant Xenopus MAP linase kinases mutated at potential phosphorylation sites. Oncogene 9:1891–1898
  • Grootjans, J. J., Zimmerman, P., Reekmans, G., Smets, A., Degeest, G., Durr, J., and David, G.. 1997. Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc. Natl. Acad. Sci. USA 94:13683–13688
  • Helbling, P. M., Tran, C. T., and Brandli, A. W.. 1998. Requirement for EphA4 receptor signaling in the segregation of xenopus third and fourth arch neural crest. cells. Mech. Dev. 78:63–79
  • Henkemeyer, M., Orioli, D., Henderson, J. T., Saxton, T. M., Roder, J., Pawson, T., and Klein, R.. 1996. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86:35–46
  • Ho, L., Symes, K., Yordan, C., Gudas, L. J., and Mercola, M.. 1994. Localization of the PDGF A and PDGFR alpha mRNA in Xenopus embryos suggests signalling from the neural ectoderm and pharyngeal endoderm to neural crest cells. Mech. Dev. 48:165–174
  • Holash, J. A., Soans, C., Chong, L. D., Shao, H., Dixit, V. M., and Pasquale, E. B.. 1997. Reciprocal expression of the Eph receptor Cek5 and its ligand(s) in early retina. Dev. Biol. 182:256–269
  • Holland, S. J., Gale, N. W., Mbamalu, G., Yancopoulos, G. D., Henkemeyer, M., and Pawson, T.. 1996. Bidirectional signaling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383:722–725
  • Issacs, H. V., Tannahill, D., and Slack, J. M. W.. 1992. Expression of a novel FGF in the Xenopus embryo. A new candidate inducing factor for mesoderm formation and anteroposterior specification. Development 114:711–720
  • Johnson, D. E., and Williams, L. T.. 1993. Functional and structural diversity in the FGF receptor multigene family. Adv. Cancer Res. 60:1–41
  • Jones, T., Karavanova, I., Maéno, M., Ong, R., Kung, H.-F., and Daar, I. O.. 1995. An amphibian homologue of the eph family of receptor tyrosine kinases is developmentally regulated. Oncogene 10:1111–1117
  • Jones, T. L., Karavanova, I., Chong, L. D., Zhou, R., and Daar, I. O.. 1997. Identification of XLerk, an Eph family ligand regulated during mesoderm induction and neurogenesis in Xenopus laevis. Oncogene 14:2159–2166
  • Jones, T. L., Chong, L. D., Kim, J., Xu, R-H., Kung, H-F., and Daar, I. O.. 1998. Loss of cell adhesion in Xenopus laevis embryos mediated by the cytoplasmic domain of XLerk, an Eph ligand. Proc. Natl. Acad. Sci. USA 95:576–581
  • Kimelman, D., and Kirschner, M. W.. 1987. Synergistic induction of mesoderm by FGF and TGF-beta and the identification of an mRNA coding for FGF in the early Xenopus embryo. Cell 51:869–877
  • Kinoshita, Y., Kinoshita, C., Heuer, J. G., and Bothwell, M.. 1993. Basic fibroblast growth factor promotes adhesive interactions of neuroepithelial cells from chick neural tube with extracellular matrix proteins in culture. Development 119:943–956
  • Klambt, C., Glazer, L., and Shilo, B. Z.. 1992. Breathless, a Drosophila FGF receptor homologue, is essential for migration of tracheal and specific midline glial cells. Genes Dev. 6:1668–1678
  • Krueger, N. X., Van Vactor, D., Wan, H. I., Gelbart, W. M., Goodman, C. S., and Saito, H.. 1996. The transmembrane tyrosine phosphatase DLAR controls motor axons guidance in Drosophila. Cell 84:611–622
  • Krull, C. E., Lansford, R., Gale, N. W., Collazo, A., Marcelle, C., Yancopoulos, G. D., Fraser, S. E., and Bronner-Fraser, M.. 1997. Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. Curr. Biol. 7:571–580
  • LaBonne, C., and Whitman, M.. 1997. Localization of MAP kinase in early Xenopus embryos: implications for endogenous FGF signalling. Dev. Biol. 183:9–20
  • Labrador, J. P., Brambilla, R., and Klein, R.. 1997. The N-terminal globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. EMBO J. 16:3889–3897
  • Lackmann, M., Oates, A. C., Dottori, M., Smith, F. M., Do, C., Power, M., Kravets, L., and Boyd, A. W.. 1998. Distinct subdomains of the EphA3 receptor mediate ligand binding and receptor dimerization. J. Biol. Chem. 273:20228–20237
  • Letourneau, P. C., Snow, D. M., and Gomez, T. M.. 1994. Regulation of growth cone motility by substratum bound molecules and cytoplasmic [Ca2+]. Prog. Brain Res. 103:85–98
  • Lin, D., Gish, G. D., Songyang, Z., and Pawson, T.. 1999. The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J. Biol. Chem. 274:3726–3733
  • McFarlane, S., and Holt, C. E.. 1996. Growth factors and neural connectivity. Genet. Eng. 18:33–47
  • McFarlane, S., Cornel, E., Amaya, E., and Holt, C. E.. 1996. Inhibition of FGF receptor activity in retinal ganglion cell axons causes errors in target recognition. Neuron 17:245–254
  • Mellitzer, G., Xu, Q., and Wilkinson, D. G.. 1999. Eph receptors and ephrins restrict cell intermingling and communication. Nature 400:77–81
  • Nakamoto, M., Cheng, H. J., Friedman, G. C., McLaughlin, T., Hansen, M. J., Yoon, C. H., O'Leary, D. D., and Flanagan, J. G.. 1996. Topographically specific effects of ELF-1 on retinal axon guidance in vitro and retinal axon mapping in vivo. Cell 86:755–766
  • Nielson, K. M., and Friesel, R.. 1996. Ligand-independent activation of fibroblast growth factor receptors by point mutations in the extracellular, transmembrane, and kinase domains. J. Biol. Chem. 271:25049–25057
  • Osterhout, D. J., Ebner, S., Xu, J., Ornitz, D. M., Zazanis, G. A., and McKinnon, R. D.. 1997. Transplanted oligodendrocyte progenitor cells expressing a dominant-negative FGF receptor transgene fail to migrate in vivo. J. Neurosci. 17:9122–9132
  • Pandey, A., Shao, H., Marks, R. M., Polverini, P. J., and Dixit, V. M.. 1995. Role of B61, the ligand for the Eck receptor tyrosine kinase, in TNF-alpha induced angiogenesis. Science 268:567–569
  • Pasquale, E. B.. 1997. The Eph family of receptors. Curr. Opin. Cell Biol. 9:608–615
  • Pini, A.. 1994. Axon guidance. Growth cones say no. Curr. Biol. 4:131–133
  • Rutishauser, U.. 1993. Adhesion molecules of the nervous system. Curr. Opin. Neurobiol. 3:709–715
  • Saffell, J. L., Williams, E. J., Mason, I., Walsh, F. S., and Doherty, P.. 1997. Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMS. Neuron 18:231–242
  • Sefton, M., and Nieto, M. A.. 1997. Multiple roles of Eph-like kinases and their ligands during development. Cell Tissue Res. 290:243–250
  • Slack, J. M. W., Darlington, B. G., Heath, J. K., and Godsave, S. F.. 1987. Mesoderm induction in early Xenopus embryos by heparin-binding growth factors. Nature 326:197–200
  • Smith, A., Robinson, V., Patel, K., and Wilkinson, D. G.. 1997. The EphA4 and EphB1 receptor tyrosine kinases and ephrinB2 ligand regulate targeted migration of branchial neural crest cells. Curr. Biol. 7:561–570
  • Soans, C., Holash, J. A., and Pasquale, E. B.. 1994. Characterization of the expression of the Cek8 receptor-type tyrosine kinase during development and in tumor cell lines. Oncogene 9:3353–3361
  • Sprenger, F., Trosclar, M. M., and Morrison, D. K.. 1993. Biochemical analysis of Torso and D-raf during Drosophila embryogenesis: implications for terminal signal transduction. Mol. Cell. Biol. 13:1163–1172
  • Stein, E., Lane, A. A., Ceretti, D. P., Schoecklmann, H. O., Schroff, A. D., Van Etten, R. L., and Daniel, T. O.. 1998. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12:667–678
  • Tanaka, M., Wang, D.-Y., Kamo, T., Igarashi, H., Wang, Y., Xiang, Y.-Y., Tanioka, F., Naito, Y., and Sugimura, H.. 1998. Interaction of EphB2-tyrosine kinase receptor and its ligand conveys dorsalization signal in Xenopus laevis development. Oncogene 17:1509–1516
  • Tannahill, D., Isaacs, H. V., Close, M. J., Peters, G., and Slack, J. M. W.. 1992. Developmental expression of the Xenopus int-2 (FGF-3) gene: activation by mesodermal and neural induction. Development 115:695–702
  • Tessier-Lavigne, M., and Goodman, C. S.. 1996. The molecular biology of axon guidance. Science 274:1123–1133
  • Van Vactor, D.. 1998. Adhesion and signaling in axonal fasciculation. Curr. Opin. Neurobiol. 8:80–86
  • Viollet, C., and Doherty, P.. 1997. CAMs and the FGF receptor: an interacting role in axonal growth. Cell Tissue Res. 290:451–455
  • Wang, H. U., and Anderson, D. J.. 1997. Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. Neuron 18:383–396
  • Wang, H. U., Chen, Z.-F., and Anderson, D. J.. 1998. Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrinB2 and its receptor EphB4. Cell 93:741–753
  • Wilkie, A. O., Morriss-Kay, G. M., Jones, E. Y., and Heath, J. K.. 1995. Functions of fibroblast growth factors and their receptors. Curr. Biol. 5:500–507
  • Winning, R. S., Scales, J. B., and Sargent, T. D.. 1996. Disruption of cell adhesion in Xenopus embryos by Pagliaccio, and Eph-class receptor tyrosine kinase. Dev. Biol. 179:309–319
  • Xu, Q., Alldus, G., Holder, N., and Wilkinson, D. G.. 1995. Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development 121:4005–4016
  • Yamaguchi, T. P., Harpal, K., Henkemeyer, M., and Rossant, J.. 1994. FGFr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev. 8:3032–3044
  • Zhan, X., Plourde, C., Hu, X., Friesel, R., and Maciag, T.. 1994. Association of fibroblast growth factor receptor-1 with c-src correlates with association between c-src and cortactin. J. Biol. Chem. 269:20221–20224
  • Zhou, R.. 1998. The Eph family receptors and ligands. Pharmacol. Ther. 77:151–181
  • Zisch, A. H., Stallcup, W. B., Chong, L. D., Dahlin-Huppe, K., Voshol, J., Schachner, M., and Pasquale, E. B.. 1997. Tyrosine phosphorylation of L1 family adhesion molecules: implication of the Eph kinase Cek5. J. Neurosci. Res. 47:655–665
  • Zisch, A. H., and Pasquale, E. B.. 1997. The Eph family: a multitude of receptors that mediate cell recognition signals. Cell Tissue Res. 290:217–226

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.