10
Views
88
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Telomere Folding Is Required for the Stable Maintenance of Telomere Position Effects in Yeast

, , &
Pages 7991-8000 | Received 01 Jun 2000, Accepted 08 Aug 2000, Published online: 28 Mar 2023

REFERENCES

  • Almer, A., and Horz, W.. 1986. Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. EMBO J. 5:2681–2687
  • Aparicio, O. M., Billington, B. L., and Gottschling, D. E.. 1991. Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279–1287
  • Aparicio, O. M., and Gottschling, D. E.. 1994. Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 8:1133–1146
  • Ausubel, F. N., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K.. Current Protocols in Molecular Biology 1 to 3: John Wiley and Sons, Inc., New York, N.Y
  • Bourns, B. D., Alexander, M. K., Smith, A. M., and Zakian, V. A.. 1998. 1994. Sir proteins, Rif proteins, and Cdc13p bind Saccharomyces telomeres in vivo. Mol. Cell. Biol. 18:5600–5608
  • Braunstein, M., Rose, A. B., Holmes, S. G., Allis, C. D., and Broach, J. R.. 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7:592–604
  • Braunstein, M., Sobel, R. E., Allis, C. D., Turner, B. M., and Broach, J. R.. 1996. Efficient transcriptional silencing in Saccharomyces cerevisiae requires a heterochromatin histone acetylation pattern. Mol. Cell. Biol. 16:4349–4356
  • Brewer, B. J., and Fangman, W. L.. 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471
  • Clarke, D. J., O'Neill, L. P., and Turner, B. M.. 1993. Selective use of H4 acetylation sites in the yeast Saccharomyces cerevisiae. Biochem. J. 294:557–561
  • Cockell, M., Palladino, F., Laroche, T., Kyrion, G., Liu, C., Lustig, A. J., and Gasser, S. M.. 1995. The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing. J. Cell Biol. 129:909–924
  • Conrad, M. N., Wright, J. H., Wolf, A. J., and Zakian, V. Z.. 1990. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability. Cell 63:739–750
  • Ekwall, K., Olsson, T., Turner, B. M., Cranston, G., and Allshire, R. C.. 1997. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91:1021–1032
  • Ferguson, B. M., and Fangman, W. L.. 1992. A position effect on the time of replication origin activation in yeast. Cell 68:333–339
  • Fleig, U. N., Pridmore, R. D., and Philippsen, P.. 1986. Construction of LYS2 cartridges for use in genetic manipulations of Saccharomyces cerevisiae. Gene 46:237–245
  • Freudenreich, C. H., Kantrow, S. M., and Zakian, V. A.. 1998. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279:853–856
  • Gotta, M., and Cockell, M.. 1997. Telomeres, not the end of the story. Bioessays 19:367–370
  • Gotta, M., Laroche, T., Formenton, A., Maillet, L., Scherthan, H., and Gasser, S. M.. 1996. The clustering of telomeres and colocalization with Rap1, Sir3, and Sir4 proteins in wild-type Saccharomyces cerevisiae. J. Cell Biol. 134:1349–1363
  • Gottlieb, S., and Esposito, R. E.. 1989. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–776
  • Gottschling, D. E., Aparico, O. M., Billington, B. L., and Zakian, V. A.. 1990. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762
  • Gottschling, D. E.. 1992. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc. Natl. Acad. Sci. USA 89:4062–4065
  • Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., and de Lange, T.. 1999. Mammalian telomeres end in a large duplex loop. Cell 97:503–514
  • Grunstein, M.. 1998. Yeast heterochromatin: regulation of its assembly and inheritance by histones. Cell 93:325–328
  • Guarente, L., and Hoar, E.. 1984. Upstream activation sites of the CYC1 gene of Saccharomyces cerevisiae are active when inverted but not when placed downstream of the “TATA box.” Proc. Natl. Acad. Sci. USA 81:7860–7864
  • Hecht, A., Laroche, T., Strahl-Bolsinger, S., Gasser, S. M., and Grunstein, M.. 1995. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80:583–592
  • Hecht, A., Strahl-Bolsinger, S., and Grunstein, M.. 1996. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383:92–96
  • Hereford, L. M., and Hartwell, L. H.. 1974. Sequential gene function in the initiation of Saccharomyces cerevisiae DNA synthesis. J. Mol. Biol. 84:445–461
  • Karlseder, J., Broccoli, D., Dai, Y., Hardy, S., and de Lange, T.. 1999. p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283:1321–1325
  • Kimmerly, W. J., and Rine, J.. 1987. Replication and segregation of plasmids containing cis-acting regulatory sites of silent mating-type genes in Saccharomyces cerevisiae are controlled by the SIR genes. Mol. Cell. Biol. 7:4225–4237
  • Lenfant, F., Mann, R. K., Thomsen, B., Ling, X., and Grunstein, M.. 1996. All four core histone N-termini contain sequences required for the repression of basal transcription in yeast. EMBO J. 15:3974–3985
  • Loo, S., and Rine, J.. 1994. Silencers and domains of generalized repression. Science 264:1768–1771
  • Lustig, A. J., Liu, C., Zhang, C., and Hanish, J. P.. 1996. Tethered Sir3p nucleates silencing at telomeres and internal loci in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2483–2495
  • Maillet, L., Boscheron, C., Gotta, M., Marcand, S., Gilson, E., and Gasser, S. M.. 1996. Evidence for silencing compartments within the yeast nucleus: a role for telomere proximity and Sir protein concentration in silencer-mediated repression. Genes Dev. 10:1796–1811
  • Miller, A. M., and Nasmyth, K. A.. 1984. Role of DNA replication in the repression of silent mating type loci in yeast. Nature 312:247–251
  • Mills, K. D., Sinclair, D. A., and Guarente, L.. 1999. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell 97:609–620
  • Monson, E. K., de Bruin, D., and Zakian, V. A.. 1997. The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc. Natl. Acad. Sci. USA 94:13081–13086
  • Moretti, P., Freeman, K., Coodly, L., and Shore, D.. 1994. Evidence that a complex of SIR proteins interacts with the silencer and telomere-binding protein RAP1. Genes Dev. 8:2257–2269
  • Nasmyth, K., Seddon, A., and Ammerer, G.. 1987. Cell cycle regulation of SW15 is required for mother-cell-specific HO transcription in yeast. Cell 49:549–558
  • Palladino, F., Laroche, T., Gilson, E., Axelrod, A., Pillus, L., and Gasser, S. M.. 1993. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75:543–555
  • Park, Y., and Lustig, A. J.. 2000. Telomere structure regulates the heritability of repressed subtelomeric chromatin in Saccharomyces cerevisiae. Genetics 154:587–598
  • Ranish, J. A., Yudkovsky, N., and Hahn, S.. 1999. Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev. 13:49–63
  • Renauld, H., Aparicio, O. M., Zierath, P. D., Billington, B. L., Chhablani, S. K., and Gottschling, D. E.. 1993. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 7:1133–1145
  • Sandell, L., Gottschling, D. E., and Zakian, V. A.. 1994. Transcription of a yeast telomere alleviates telomere position effect without affecting chromosome stability. Proc. Natl. Acad. Sci. USA 91:12061–12065
  • Schmid, A., Fascher, K. D., and Horz, W.. 1992. Nucleosome disruption at the yeast PHO5 promoter upon PHO5 induction occurs in the absence of DNA replication. Cell 71:853–864
  • Sekinger, E. A., and Gross, D. S.. 1999. SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin EMBO J. 18:7041–7055
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Singh, J., and Klar, A. J. S.. 1992. Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. Genes Dev. 6:186–196
  • Stavenhagen, J. B., and Zakian, V. A.. 1994. Internal tracts of telomeric DNA act as silencers in Saccharomyces cerevisiae Genes Dev. 8:1411–1422
  • Stavenhagen, J. B., and Zakian, V. A.. 1998. Yeast telomeres exert a position effect on recombination between internal tracts of yeast telomeric DNA. Genes Dev. 12:3044–3058
  • Strahl-Bolsinger, S., Hecht, A., Luo, K., and Grunstein, M.. 1997. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11:83–93
  • Struhl, K.. 1984. Genetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence. Proc. Natl. Acad. Sci. USA 81:7865–7869
  • Tanaka, S., Livingstone-Zatchej, M., and Thoma, F.. 1996. Chromatin structure of the yeast URA3 gene at high resolution provides insight into structure and positioning of nucleosomes in the chromosomal context. J. Mol. Biol. 257:919–934
  • Thompson, J. S., Ling, X., and Grunstein, M.. 1994. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature 369:245–247
  • Turner, B. M., Birley, A. J., and Lavender, J.. 1992. Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384
  • van Steensel, B., Smogorzewska, A., and de Lange, T.. 1998. TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413
  • Wellinger, R. J., Wolf, A. J., and Zakian, V. A.. 1993. Origin activation and formation of single-strand TG1–3 tails occur sequentially in late S phase on a yeast linear plasmid. Mol. Cell. Biol. 13:4057–4065
  • Wright, J. H., Gottschling, D. E., and Zakian, V. A.. 1992. Saccharomyces telomeres assume a non-nucleosomal chromatin structure. Genes. Dev. 6:197–210
  • Zakian, V. A.. 1996. Structure, function, and replication of Saccharomyces cerevisiae telomeres. Annu. Rev. Genet. 30:141–172

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.