12
Views
45
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Loss of a Protein Phosphatase 2A Regulatory Subunit (Cdc55p) Elicits Improper Regulation of Swe1p Degradation

, , &
Pages 8143-8156 | Received 20 Mar 2000, Accepted 02 Aug 2000, Published online: 28 Mar 2023

REFERENCES

  • Amon, A., Surana, U., Muroff, I., and Nasmyth, K.. 1992. Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature 23:368–371
  • Amon, A., Tyers, M., Futcher, B., and Nasmyth, K.. 1993. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74:993–1007
  • Barral, Y., Parra, M., Bidlingmaier, S., and Snyder, M.. 1999. Nim1-related kinases coordinate cell cycle progression with the organization of the peripheral cytoskeleton in yeast. Genes Dev. 13:176–187
  • Blacketer, M. J., Koehler, C. M., Coats, S. G., Myers, A. M., and Madaule, P.. 1993. Regulation of dimorphism in Saccharomyces cerevisiae: involvement of the novel protein kinase homolog Elm1p and protein phosphatase 2A. Mol. Cell. Biol. 13:5567–5581
  • Blasina, A., Paegle, E. S., and McGowan, C. H.. 1997. The role of inhibitory phosphorylation of CDC2 following DNA replication block and radiation-induced damage in human cells. Mol. Biol. Cell 8:1013–1023
  • Booher, R. N., Deshaies, R. J., and Kirschner, M. W.. 1993. Properties of Saccharomyces cerevisiae wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. EMBO J. 12:3417–3426
  • Carroll, C. W., Altman, R., Schieltz, D., Yates, J. R., and Kellogg, D.. 1998. The septins are required for the mitosis-specific activation of the Gin4 kinase. J. Cell Biol. 143:709–717
  • Cohen-Fix, O., Peters, J. M., Kirschner, M. W., and Koshland, D.. 1996. Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10:3081–3093
  • Coleman, T. R., and Dunphy, W. G.. 1994. Cdc2 regulatory factors. Curr. Opin. Cell Biol. 6:877–882
  • De Brabander, M., De May, J., Joniau, M., and Geuens, G.. 1977. Ultrastructural immunocytochemical distribution of tubulin in cultured cells treated with microtubule inhibitors. Cell Biol. Int. Rep. 1:177–183
  • Di Como, C. J., and Arndt, K. T.. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Genes Dev. 10:1904–1916
  • Edgington, N. P., Blacketer, M. J., Bierwagen, T. A., and Myers, A. M.. 1999. Control of Saccharomyces cerevisiae filamentous growth by cyclin-dependent kinase Cdc28. Mol. Cell. Biol. 19:1369–1380
  • Evangelista, C. C.Jr., Rodriguez Torres, A. M., Limbach, M. P., and Zitomer, R. S.. 1996. Rox3 and Rts1 function in the global stress response pathway in baker's yeast. Genetics 142:1083–1093
  • Evans, D. R., and Stark, M. J.. 1997. Mutations in the Saccharomyces cerevisiae type 2A protein phosphatase catalytic subunit reveal roles in cell wall integrity, actin cytoskeleton organization and mitosis. Genetics 145:227–241
  • Hallberg, E. M., Shu, Y., and Hallberg, R. L.. 1993. Loss of mitochondrial hsp60 function: nonequivalent effects on matrix-targeted and intermembrane-targeted proteins. Mol. Cell. Biol. 13:3050–3057
  • Healy, A. M., Zolnierowicz, S., Stapleton, A. E., Goebl, M., Depaoliroach, A. A., and Pringle, J. R.. 1991. CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Mol. Cell. Biol. 11:5767–5780
  • Honigberg, S. M., and Esposito, R. E.. 1994. Reversal of cell determination in yeast meiosis: postcommitment arrest allows return to mitotic growth. Proc. Natl. Acad. Sci. USA 91:6559–6563
  • Hwang, L. H., Lau, L. F., Smith, D. L., Mistrot, C. A., Hardwick, K. G., Hwang, E. S., Amon, A., and Murray, A. W.. 1998. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279:1041–1044
  • Irniger, S., Piatti, S., Michaelis, C., and Nasmyth, K.. 1995. Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 21:269–278
  • Jin, P., Gu, Y., and Morgan, D. O.. 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134:963–970
  • Kaiser, P., Sia, R. A., Bardes, E. G., Lew, D. J., and Reed, R. I.. 1998. Cdc34 and the F-box protein Met30 are required for degradation of the Cdk-inhibitory kinase Swe1. Genes Dev. 12:2587–2597
  • Kim, Y. J., Francisco, L., Chen, G. C., Marcotte, E., and Chan, C. S.. 1994. Control of cellular morphogenesis by the Ip12/Bem2 GTPase-activating protein: possible role of protein phosphorylation. J. Cell Biol. 127:1381–1394
  • Kinoshita, N., Yamano, H., Niwa, H., Yoshida, T., and Yanagida, M.. 1993. Negative regulation of mitosis by the fission yeast protein phosphatase ppa2. Genes Dev. 7:1059–1071
  • Köhrer, K., and Domdey, H.. 1991. Preparation of high molecular weight RNA. Methods Enzymol. 194:398–401
  • Lee, T. H., Solomon, M. J., Mumby, M. C., and Kirschner, M. W.. 1991. INH, a negative regulator of MPF, is a form of protein phosphatase 2A. Cell 64:415–423
  • Lew, D. J., and Reed, S. I.. 1993. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120:1305–1320
  • Li, R., and Murray, A. W.. 1991. Feedback control of mitosis in budding yeast. Cell 66:519–531
  • Lin, F. C., and Arndt, K. T.. 1995. The role of Saccharomyces cerevisiae type 2A phosphatase in the actin cytoskeleton and in entry into mitosis. EMBO J. 14:2745–2759
  • McMillan, J. N., Longtine, M. S., Sia, R. A., Theesfeld, C. L., Bardes, E. S., Pringle, J. R., and Lew, D. J.. 1999. The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of Swe1p degradation by Hsl1p and Hsl7p. Mol. Cell. Biol. 19:6929–6939
  • McMillan, J. N., Sia, R. A., Bardes, E. S., and Lew, D. J.. 1999. Phosphorylation-independent inhibition of Cdc28p by the tyrosine kinase Swe1p in the morphogenesis checkpoint. Mol. Cell. Biol. 19:5981–5990
  • McMillan, J. N., Sia, R. A., and Lew, D. J.. 1998. A morphogenesis checkpoint monitors the actin cytoskeleton in yeast. J. Cell Biol. 21:1487–1499
  • Michael, W. M., and Newport, J.. 1998. Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science 282:1886–1889
  • Michaelis, C., Ciosk, R., and Nasmyth, K.. 1997. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45
  • Millward, T. A., Zolnierowicz, S., and Hemmings, B. A.. 1999. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci. 24:186–191
  • Minshull, J., Straight, A., Rudner, A. D., Dernburg, A. F., Belmont, A., and Murray, A. W.. 1996. Protein phosphatase 2A regulates MPF activity and sister chromatid cohesion in budding yeast. Curr. Biol. 6:1609–1620
  • Mizunuma, M., Hirata, D., Miyahara, K., Tsuchiya, E., and Miyakawa, T.. 1998. Role of calcineurin and Mpk1 in regulating the onset of mitosis in budding yeast. Nature 392:303–306
  • Morgan, D. O.. 1995. Principles of CDK regulation. Nature 374:131–134
  • Rhind, N., Furnari, B., and Russell, P.. 1997. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 11:504–511
  • Rhind, N., and Russell, P.. 1998. Tyrosine phosphorylation of cdc2 is required for the replication checkpoint in Schizosaccharomyces pombe. Mol. Cell. Biol. 18:3782–3787
  • Ronne, H., Carlberg, M., Hu, G. Z., and Nehlin, J. O.. 1991. Protein phosphatase 2A in Saccharomyces cerevisiae: effects on cell growth and bud morphogenesis. Mol. Cell. Biol. 11:4876–4884
  • Rose, M. D., Winston, F., and Hieter, P.. 1990. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Rothstein, R. J.. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211
  • Rudner, A. D., and Murray, A. W.. 1996. The spindle assembly checkpoint. Curr. Opin. Cell Biol. 8:773–780
  • Russell, P., and Nurse, P.. 1986. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 11:145–153
  • Russell, P., and Nurse, P.. 1987. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 22:559–567
  • Shu, Y., Yang, H., Hallberg, E., and Hallberg, R. L.. 1997. Molecular genetic analysis of Rts1p, a B′ regulatory subunit of Saccharomyces cerevisiae protein phosphatase 2A. Mol. Cell. Biol. 17:3242–3253
  • Shu, Y., and Hallberg, R. L.. 1995. SCS1, a multicopy suppressor of hsp60-ts mutant alleles, does not encode a mitochondrially targeted protein. Mol. Cell. Biol. 15:5618–5626
  • Shulewitz, M. J., Inouye, C. J., and Thorner, J.. 1999. Hsl7 localizes to a septin ring and serves as an adapter in a regulatory pathway that relieves tyrosine phosphorylation of Cdc28 protein kinase in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:7123–7137
  • Sia, R. A., Bardes, E. S., and Lew, D. J.. 1998. Control of Swe1p degradation by the morphogenesis checkpoint. EMBO J. 17:6678–6688
  • Sia, R. A., Herald, H. A., and Lew, D. J.. 1996. Cdc28 tyrosine phosphorylation and the morphogenesis checkpoint in budding yeast. Mol. Biol. Cell 7:1657–1666
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J., and Harper, J. W.. 1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219
  • Smythe, C., and Newport, J. W.. 1992. Coupling of mitosis to the completion of S phase in Xenopus occurs via modulation of the tyrosine kinase that phosphorylates p34cdc2. Cell 68:787–797
  • Sneddon, A. A., Cohen, P. T., and Stark, M. J.. 1990. Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes. EMBO J. 9:4339–4346
  • Sorger, P. K., and Murray, A. W.. 1992. S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28. Nature 23:365–368
  • Stark, M. J.. 1996. Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation. Yeast 12:1647–1675
  • van Zyl, W., Huang, W., Sneddon, A. A., Stark, M., Camier, S., Werner, M., Marck, C., Sentenac, A., and Broach, J. R.. 1992. Inactivation of the protein phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4946–4959
  • Walter, G., and Mumby, M.. 1993. Protein serine/threonine phosphatases and cell transformation. Biochim. Biophys. Acta 1155:207–226
  • Wang, Y., and Burke, D. J.. 1997. Cdc55p, the B-type regulatory subunit of protein phosphatase 2A, has multiple functions in mitosis and is required for the kinetochore/spindle checkpoint in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:620–626
  • Wera, S., and Hemmings, B. A.. 1995. Serine/threonine protein phosphatases. Biochem. J. 311:17–29
  • Wittenberg, C., Sugimoto, K., and Reed, S. I.. 1990. G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62:225–237
  • Yamamoto, A., Guacci, V., and Koshland, D.. 1996. Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell Biol. 133:99–110
  • Zachariae, W., Shin, T. H., Galova, M., Obermaier, B., and Nasmyth, K.. 1996. Identification of subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science 274:1201–1204

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.