13
Views
60
CrossRef citations to date
0
Altmetric
Gene Expression

Participation of the C-Terminal Domain of RNA Polymerase II in Exon Definition during Pre-mRNA Splicing

&
Pages 8290-8301 | Received 23 Jun 2000, Accepted 08 Aug 2000, Published online: 28 Mar 2023

REFERENCES

  • Adams, M. D., Rudner, D. Z., and Rio, D. C.. 1996. Biochemistry and regulation of pre-mRNA splicing. Curr. Opin. Cell Biol. 8:331–339
  • Bauren, G., and Wieslander, L.. 1994. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76:183–192
  • Bentley, D.. 1999. Coupling RNA polymerase II transcription with pre-mRNA processing. Curr. Opin. Cell Biol. 11:347–351
  • Berget, S. M.. 1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270:2411–2414
  • Beyer, A. L., Yvonne, N., and Osheim, Y. N.. 1988. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 2:754–765
  • Black, D. L.. 1995. Finding splice sites in a wilderness of RNA. RNA 1:763–771
  • Bregman, D. B., Du, L., van der Zee, S., and Warren, S. L.. 1995. Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains. J. Cell Biol. 129:287–298
  • Chabot, B., Bisotto, S., and Vincent, M.. 1995. The nuclear matrix phosphoprotein p255 associates with splicing complexes as part of the [U4/U6.U5] tri-snRNP particle. Nucleic Acids Res. 23:3206–3213
  • Cho, E. J., Takagi, T., Moore, C. R., and Buratowski, S.. 1997. mRNA capping enzyme is recruited to the transcription complex by phosphorylation of the RNA polymerase II carboxy-terminal domain. Genes Dev. 11:3319–3326
  • Corden, J. L.. 1990. Tails of RNA polymerase II. Trends Biochem. Sci. 10:383–387
  • Corden, J. L., and Patturajan, M.. 1997. A CTD function linking transcription to splicing. Trends Biochem. Sci. 22:413–416
  • Cramer, P., Caceres, J. F., Cazalla, D., Kadener, S., Muro, A. F., Baralle, F. E., and Kornblihtt, A. R.. 1999. Coupling of transcription with alternative splicing: RNA pol II promoters modulate SF2/ASF and 9G8 effects on an exonic splicing enhancer. Mol. Cell 4:251–258
  • Dahmus, M. E.. 1994. The role of multisite phosphorylation in the regulation of RNA polymerase II activity. Prog. Nucleic Acid Res. Mol. Biol. 48:143–179
  • Dahmus, M. E.. 1995. Phosphorylation of the C-terminal domain of RNA polymerase II. Biochim. Biophys. Acta 1261:171–182
  • Du, L., and Warren, S. L.. 1997. A functional interaction between the carboxy-terminal domain of RNA polymerase II and pre-mRNA splicing. J. Cell Biol. 136:5–18
  • Dye, M. J., and Proudfoot, N. J.. 1999. Terminal exon definition occurs cotranscriptionally and promotes termination of RNA polymerase II. Mol. Cell 3:371–378
  • Eperon, I. C., Ireland, D. C., Smith, R. A., Mayeda, A., and Krainer, A. R.. 1993. Pathways for selection of 5′ splice sites by U1 snRNPs and SF2/ASF. EMBO J. 12:3607–3617
  • Greenleaf, A. L.. 1993. A positive addition to a negative tail's tale. Proc. Natl. Acad. Sci. USA 90:10896–10897
  • Harlow, E., and Lane, D.. 1988. Antibodies: a laboratory manual 521–523 Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Hatton, A. R., Subramaniam, V., and Lopez, A. J.. 1998. Generation of alternative Ultrabithorax isoforms and stepwise removal of a large intron by replacing at exon-exon junctions. Mol. Cell 2:787–796
  • Hirose, Y., and Manley, J. L.. 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395:93–96
  • Hirose, Y., Tacke, R., and Manley, J. L.. 1999. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev. 13:1234–1239
  • Ho, C. K., Sriskanda, V., McCracken, S., Bentley, D., Schwer, B., and Shuman, S.. 1998. The guanylyltransferase domain of mammalian mRNA capping enzyme binds to the phosphorylated carboxyl-terminal domain of RNA polymerase II. J. Biol. Chem. 273:9577–9585
  • Jamison, S. F., Pasman, Z., Wang, J., Wil, C., Luhrmann, R., Manley, J. L., and Garcia-Blanco, M. A.. 1995. U1 snRNP-ASF/SF2 interaction and 5′ splice site recognition: characterization of required elements. Nucleic Acids Res. 23:3260–3267
  • Kessler, O., Jiang, Y., and Chasin, L. A.. 1993. Order of intron removal during splicing of endogenous adenine phosphoribosyltransferase and dihydrofolate reductase pre-mRNA. Mol. Cell. Biol. 13:6211–6222
  • Kim, E., Du, L., Bregman, D. B., and Warren, S. L.. 1997. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA. J. Cell Biol. 136:19–28
  • Lee, J. M., and Greenleaf, A. L.. 1989. A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II. Proc. Natl. Acad. Sci. USA 86:3624–3628
  • Lewis, J. D., Izaurralde, E., Jarmolowski, A., McGuigan, C., and Mattaj, I. W.. 1996. A nuclear cap-binding complex facilitates association of U1 snRNP with the cap-proximal 5′ splice site. Genes Dev. 10:1683–1698
  • Lou, H., Gagel, R. F., and Berget, S. M.. 1996. An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev. 10:208–219
  • McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S. D., Wickens, M., and Bentley, D. L.. 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357–361
  • McCracken, S., Fong, N., Rosonina, E., Yankulov, K., Brothers, G., Siderovski, D., Hessel, A., Foster, S., Amgen EST Program, Shuman, S., and Bentley, D. L.. 1997. 5′-capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11:3306–3318
  • McCullough, A. J., and Berget, S. M.. 1997. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol. Cell. Biol. 17:4562–4571
  • Mortillaro, M. J., Blencowe, B. J., Wei, X., Nakayasu, H., Du, L., Warren, S. L., Sharp, P. A., and Berezney, R.. 1996. A hyperphosphorylated form of the large subunit of RNA polymerase II is associated with splicing complexes and the nuclear matrix. Proc. Natl. Acad. Sci. USA 93:8253–8257
  • Neugebauer, K. M., and Roth, M. B.. 1997. Transcription units as RNA processing units. Genes Dev. 11:3279–3285
  • Niwa, M., Rose, S. D., and Berget, S. M.. 1990. Polyadenylation is stimulated by the presence of an upstream intron. Genes Dev. 4:1552–1559
  • Niwa, M., and Berget, S. M.. 1991. Polyadenylation precedes splicing in vitro. Gene Exp. 1:5–14
  • O'Brien, T., Hardin, S., Greenleaf, A., and Lis, J. T.. 1994. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370:75–77
  • Patturajan, M., Wei, X., Berezney, R., and Corden, J. L.. 1998. A nuclear matrix protein interacts with the phosphorylated C-terminal domain of RNA polymerase II. Mol. Cell. Biol. 18:2406–2415
  • Patturajan, M., Schulte, R. J., Sefton, B. M., Berezney, R., Vincent, M., Bensaude, O., Warren, S. L., and Corden, J. L.. 1998. Growth-related changes in phosphorylation of yeast RNA polymerase II. J. Biol. Chem. 273:4689–4694
  • Reed, R.. 1996. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr. Opin. Genet. Dev. 6:215–220
  • Robberson, B. L., Cote, G. J., and Berget, S. M.. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94
  • Shuman, S.. 1997. Origins of mRNA identity: capping enzymes bind to the phosphorylated C-terminal domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 94:12758–12760
  • Steinmetz, E. J.. 1997. Pre-mRNA processing and the CTD of RNA polymerase II: the tail that wags the dog? Cell 89:491–494
  • Talerico, M., and Berget, S. M.. 1990. Effect of 5′ splice site mutations on splicing of the preceding intron. Mol. Cell. Biol. 10:6299–6305
  • Thompson, N. E., Steinberg, T. H., Aronson, D. B., and Burgess, R. R.. 1989. Inhibition of in vivo and in vitro transcription by monoclonal antibodies prepared against wheat germ RNA polymerase II that react with the heptapeptide repeat of eukaryotic RNA polymerase II. J. Biol. Chem. 264:11511–11520
  • Xiao, S. H., and Manley, J. L.. 1997. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11:334–344
  • Yue, Z., Maldonado, E., Pillutla, R., Cho, H., Reinberg, D., and Shatkin, A. J.. 1997. Mammalian capping enzyme complements mutant Saccharomyces cerevisiae lacking mRNA guanylyltransferase and selectively binds the elongating form of RNA polymerase II. Proc. Natl. Acad. Sci. USA 94:12898–12903
  • Yuryev, A., Patturajan, M., Litingtung, Y., Joshi, R. V., Gentile, C., Gebara, M., and Corden, J. L.. 1996. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl. Acad. Sci. USA 93:6975–6980
  • Zhang, J., and Corden, J. L.. 1991. Phosphorylation causes a conformational change in the carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J. Biol. Chem. 266:2297–2302

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.