13
Views
25
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Combinatorial Effect of T-Cell Receptor Ligation and CD45 Isoform Expression on the Signaling Contribution of the Small GTPases Ras and Rap1

, , &
Pages 8740-8747 | Received 21 Mar 2000, Accepted 08 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Alberola-Ila, J., Forbush, K. A., Seger, R., Krebs, E. G., and Perlmutter, R. M.. 1995. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373:620–623
  • Baldari, C. T., Macchia, G., and Telford, J. L.. 1992. Interleukin-2 promoter activation in T-cells expressing activated Ha-ras. J. Biol. Chem. 267:4289–4291
  • Boussiotis, V. A., Freeman, G. J., Berezovskaya, A., Barber, D. L., and Nadler, L. M.. 1997. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278:124–128
  • Boutin, Y., Leitenberg, D., Tao, X., and Bottomly, K.. 1997. Distinct biochemical signals characterize agonist- and altered peptide ligand-induced differentiation of naïve CD4+ T cells into Th1 and Th2 subsets. J. Immunol. 159:5802–5809
  • Bruder, J. T., Heidecker, G., and Rapp, U. R.. 1992. Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev. 6:545–556
  • Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J., and Der, C. J.. 1998. Increasing complexity of Ras signaling. Oncogene 17:1395–1413
  • de Rooij, J., Boenink, N. M., van Triest, M., Cool, R. H., Wittinghofer, A., and Bos, J. L.. 1999. PDZ-GEF1, a guanine nucleotide exchange factor specific for rap1 and rap2. J. Biol. Chem. 274:38125–38130
  • de Rooij, J., Zwartkruis, F. J., Verheijen, M. H., Cool, R. H., Nijman, S. M., Wittinghofer, A., and Bos, J. L.. 1998. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477
  • Dianzani, U., Luqman, M., Rojo, J., Yagi, J., Baron, J. L., Woods, A., Janeway, C. A., and Bottomly, K.. 1990. Molecular association on the T cell surface correlate with immunological memory. Eur. J. Immunol. 20:2249–2257
  • Downward, J., Graves, J. D., Warne, P. H., Rayter, S., and Cantrell, D. A.. 1990. Stimulation of p21ras upon T-cell activation. Nature 346:719–723
  • Fields, P. E., Gajewski, T. F., and Fitch, F. W.. 1996. Blocked Ras activation in anergic CD4+ T cells. Science 271:1276–1278
  • Franke, B., Akkerman, J. W., and Bos, J. L.. 1997. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 16:252–259
  • Hogquist, K. A., Jameson, S. C., Heath, W. R., Howard, J. L., Bevan, M. J., and Carbone, F. R.. 1994. T cell receptor antagonist peptides induce positive selection. Cell 76:17–27
  • Katagari, K., Hattori, M., Minato, N., Irie, S.-K., Takatsu, K., and Kinashi, T.. 2000. Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol. Cell. Biol. 20:1956–1969
  • Kauffmann-Zeh, A., Rodriguez-Viciana, P., Ulrich, E., Gilbert, C., Coffer, P., Downward, J., and Evan, G.. 1997. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385:544–548
  • Kawasaki, H., Springett, G. M., Toki, S., Canales, J. J., Harlan, P., Blumenstiel, J. P., Chen, E. J., Bany, I. A., Mochizuki, N., Ashbacher, A., Matsuda, M., Housman, D. E., and Graybiel, A. M.. 1998. A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia. Proc. Natl. Acad. Sci. USA 95:13278–13283
  • Kersh, E. N., Shaw, A. S., and Allen, P. M.. 1998. Fidelity of T cell activation through multistep T cell receptor zeta phosphorylation. Science 281:572–575
  • Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., and Noda, M.. 1989. A ras-related gene with transformation suppressor activity. Cell 56:77–84
  • Koretzky, G. A., Picus, J., Schultz, T., and Weiss, A.. 1991. Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc. Natl. Acad. Sci. USA 88:2037–2041
  • Koretzky, G. A., Picus, J., Thomas, M. L., and Weiss, A.. 1990. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature 346:66–68
  • Leitenberg, D., and Bottomly, K.. 1999. Regulation of naïve T cell differentiation by varying the potency of TCR signal transduction. Sem. Immunol. 11:283–292
  • Leitenberg, D., Boutin, Y., Lu, D. D., and Bottomly, K.. 1999. Biochemical association of CD45 with the T cell receptor complex: regulation by CD45 isoform and during T cell activation. Immunity 10:701–711
  • Leitenberg, D., Novak, T. J., Farber, D., Smith, B. R., and Bottomly, K.. 1996. The extracellular domain of CD45 controls association with the CD4-T cell receptor complex and the response to antigen-specific stimulation. J. Exp. Med. 183:249–259
  • Li, B., Subleski, M., Fusaki, N., Yamamoto, T., Copeland, T., Princler, G. L., Kung, H., and Kamata, T.. 1996. Catalytic activity of the mouse guanine nucleotide exchanger mSOS is activated by Fyn tyrosine protein kinase and the T-cell antigen receptor in T cells. Proc. Natl. Acad. Sci. USA 93:1001–1005
  • Li, W., Whaley, C. D., Mondino, A., and Mueller, D. L.. 1996. Blocked signal transduction to the ERK and JNK protein kinases in anergic CD4+ T cells. Science 271:1272–1276
  • Maly, F.-E., Quilliam, L. A., Dorseuil, O., Der, C. J., and Bokoch, G. M.. 1994. Activated or dominant inhibitory mutants of Rap1A decrease the oxidative burst of Epstein-Barr virus-transformed human B lymphocytes. J. Biol. Chem. 269:18743–18746
  • McKenney, D. W., Onodera, H., Gorman, L., Mimura, T., and Rothstein, D. M. J.. 1995. Distinct isoforms of the CD45 protein-tyrosine phosphatase differentially regulate interleukin 2 secretion and activation signal pathways involving Vav in T cells. J. Biol. Chem. 270:24949–24954
  • Metz, D. P., and Bottomly, K.. 1999. Function and regulation of memory T cells. Immunol. Res. 19:127–141
  • Mustelin, T., Pessa-Morikawa, T., Autero, M., Gassmann, M., Andersson, L. C., Gahmberg, C. G., and Burn, P.. 1992. Regulation of the p59fyn protein tyrosine kinase by the CD45 phosphotyrosine phosphatase. Eur. J. Immunol. 22:1173–1178
  • Novak, T. J., Farber, D., Leitenberg, D., Hong, S. C., Johnson, P., and Bottomly, K.. 1994. Isoforms of the transmembrane tyrosine phosphatase CD45 differentially affect T cell recognition. Immunity 1:109–119
  • Ostergaard, H. L., Shackelford, D. A., Hurley, T. R., Johnson, P., Hyman, R., Sefton, B. M., and Trowbridge, I. S.. 1989. Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc. Natl. Acad. Sci. USA 86:8959–8963
  • Owaki, H., Vartma, R., Gillis, B., Bruder, J. T., Rapp, U. R., Davis, L. S., and Geppert, T. D.. 1993. Raf-1 is required for T cell IL2 production. EMBO J. 12:4367–4373
  • Patel, H. R., Renz, H., Terada, N., and Gelfand, E. W.. 1994. Differential activation of p21ras in CD45RA+ and CD45RO+ human T lymphocytes. J. Immunol. 152:2830–2836
  • Pilarski, L. M., Gillitzer, R., Zola, H., Shortman, K., and Scollay, R.. 1989. Definition of the thymic generative lineage by selective expression of high molecular weight isoforms of CD45 (T200). Eur. J. Immunol. 19:589–597
  • Quinn, M. T., Parkos, C. A., Walker, L., Orkin, S. H., Dinauer, M. C., and Jesaitis, A. J.. 1989. Association of a Ras-related protein with cytochrome b of human neutrophils. Nature 342:198–200
  • Rayter, S. I., Woodrow, M., Lucas, S. C., Cantrell, D. A., and Downward, J.. 1992. p21ras mediates control of IL-2 gene promoter function in T cell activation. EMBO J. 11:4549–4556
  • Reedquist, K. A., and Bos, J. L.. 1998. Costimulation through CD28 suppresses T cell receptor-dependent activation of the Ras-like small GTPase Rap1 in human T lymphocytes. J. Biol. Chem. 273:4944–4949
  • Reedquist, K. A., Ross, E., Koop, E. A., Wolthuis, R. M. F., Zwartkruis, F. J. T., van Kooyk, Y., Salmon, M., Buckley, C. D., and Bos, J. L.. 2000. The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J. Cell Biol. 148:1151–1158
  • Robinson, A. T., Miller, N., and Alexander, D. R.. 1993. CD3 antigen-mediated calcium signals and protein kinase C activation are higher in CD45RO+ than in CD45RA+ human T lymphocyte subsets. Eur. J. Immunol. 23:61–68
  • Rojo, J. M., Saizawa, K., and Janeway, C. A.. 1989. Physical association of CD4 and the T-cell receptor can be induced by anti-T-cell receptor antibodies. Proc. Natl. Acad. Sci. USA 86:3311–3315
  • Rubinfeld, B., Munemitsu, S., Clark, R., Conroy, L., Watt, K., Crosier, W. J., McCormick, F., and Polakis, P.. 1991. Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1. Cell 65:1033–1042
  • Saizawa, K., Rojo, J., and Janeway, C. A.. 1987. Evidence for a physical association of CD4 and CD3:alpha:beta T-cell receptor. Nature 328:260–263
  • Serfling, E., Barthelmas, R., Pfeuffer, I., Schenk, B., Zarius, S., Swoboda, R., Mercurio, F., and Karin, M.. 1989. Ubiquitous and lymphocyte-specific factors are involved in the induction of the mouse interleukin 2 gene in T lymphocyte. EMBO J. 8:465–473
  • Sloan-Lancaster, J., Shaw, A. S., Rothbard, J. B., and Allen, P. M.. 1994. Partial T cell signaling: altered phospho-zeta and lack of zap70 recruitment in APL-induced T cell anergy. Cell 79:913–922
  • Swat, W., Shinkai, Y., Cheng, H. L., Davidson, L., and Alt, F. W.. 1996. Activated Ras signals differentiation and expansion of CD4+8+ thymocytes. Proc. Natl. Acad. Sci. USA 93:4683–4687
  • Torti, M., Bertoni, A., Canobbio, I., Sinigaglia, F., Lapetina, E. G., and Balduini, C.. 1999. Rap1B and Rap2B translocation to the cytoskeleton by von Willebrand factor involves FcγII receptor-mediated protein tyrosine phosphorylation. J. Biol. Chem. 274:13690–13697
  • Trowbridge, I. S., and Thomas, M. L.. 1994. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12:85–116
  • Tsukamoto, N., Hattori, M., Yang, H., Bos, J. L., and Minato, N.. 1999. Rap1 GTPase-activating protein SPA-1 negatively regulates cell adhesion. J. Biol. Chem. 274:18463–18469
  • Vossler, M. R., Yao, H., York, R. D., Pan, M. G., Rim, C. S., and Stork, P. J.. 1997. cAMP activated MAP kinase and Elk-1 through a B-Raf and Rap1-dependent pathway. Cell 89:73–82
  • Yamashita, M., Kimura, M., Kuba, M., Shimizu, C., Tada, T., Perlmutter, R. M., and Nakayama, T.. 1999. T cell antigen receptor-mediated activation of the Ras/mitogen-activated protein kinase pathway controls interleukin 4 receptor function and type-2 helper T cell differentiation. Proc. Natl. Acad. Sci. USA 96:1024–1029
  • Yoon, S. T., Dianzani, U., Bottomly, K., and Janeway, C. A.. 1994. Both high and low avidity antibodies to the T cell receptor can have agonist or antagonist activity. Immunity 1:563–569
  • York, R. D., Yao, H., Dillon, T., Ellig, C. L., Eckert, S. P., McCleskey, E. W., and Stork, P. J.. 1998. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392:622–626

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.