5
Views
23
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Localization and Signaling of Gβ Subunit Ste4p Are Controlled by a-Factor Receptor and thea-Specific Protein Asg7p

, , , , , & show all
Pages 8826-8835 | Received 29 Jun 2000, Accepted 15 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Bell, B., Xing, H., Yan, K., Gautam, N., and Muslin, A. J.. 1999. KSR-1 binds to G-protein βγ subunits and inhibits βγ-induced mitogen-activated protein kinase activation. J. Biol. Chem. 274:7982–7986
  • Cole, G. M., and Reed, S. I.. 1991. Pheromone-induced phosphorylation of a G protein β subunit in S. cerevisiae is associated with an adaptive response to mating pheromone. Cell 64:703–716
  • Couve, A., and Hirsch, J. P.. 1996. Loss of sustained Fus3p kinase activity and the G1 arrest response in cells expressing an inappropriate pheromone receptor. Mol. Cell. Biol. 16:4478–4485
  • Cross, F. R.. 1990. The DAF2–2 mutation, a dominant inhibitor of the STE4 step in the α-factor signalling pathway of Saccharomyces cerevisiae MATa cells. Genetics 126:301–308
  • Cross, F. R.. 1997. ‘Marker swap’ plasmids: convenient tools for budding yeast molecular genetics. Yeast 13:647–653
  • Cross, F. R., and Tinkelenberg, A. H.. 1991. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65:875–883
  • Dietzel, C., and Kurjan, J.. 1987. The yeast SCG1 gene: a Gα-like protein implicated in the a- and α-factor response pathway. Cell 50:1001–1010
  • Engebrecht, J., Hirsch, J., and Roeder, G. S.. 1990. Meiotic gene conversion and crossing over: their relationship to each other and to chromosome synapsis and segregation. Cell 62:927–937
  • Gaudet, R., Bohm, A., and Sigler, P. B.. 1996. Crystal structure at 2.4 Å resolution of the complex of transducin βγ and its regulator, phosducin. Cell 87:577–588
  • Gietz, R. D., and Sugino, A.. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534
  • Heim, R., and Tsien, R. Y.. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6:178–182
  • Heithier, H., Fröhlich, M., Dees, C., Baumann, M., Häring, M., Gierschik, P., Schiltz, E., Vaz, W. L. C., Hekman, M., and Helmreich, E. J. M.. 1992. Subunit interactions of GTP-binding proteins. Eur. J. Biochem. 204:1169–1181
  • Hirsch, J. P., and Cross, F. R.. 1993. The pheromone receptors inhibit the pheromone response pathway in Saccharomyces cerevisiae by a process that is independent of their associated Gα protein. Genetics 135:943–953
  • Hirschman, J. E., De Zutter, G. S., Simonds, W. F., and Jenness, D. D.. 1997. The Gβγ complex of the yeast pheromone response pathway: subcellular fractionation and protein-protein interactions. J. Biol. Chem. 272:240–248
  • Ito, H., Fukuda, Y., Murata, K., and Kimura, A.. 1983. Transformation of intact yeast cells with alkali cations. J. Bacteriol. 153:163–168
  • Jackson, C. L., Konopka, J. B., and Hartwell, L. H.. 1991. S. cerevisiae α pheromone receptors activate a novel signal transduction pathway for mating partner discrimination. Cell 67:389–402
  • Kim, J., Couve, A., and Hirsch, J. P.. 1999. Receptor inhibition of pheromone signaling is mediated by the Ste4p Gβ subunit. Mol. Cell. Biol. 19:441–449
  • Leberer, E., Dignard, D., Hougan, L., Thomas, D. Y., and Whiteway, M.. 1992. Dominant-negative mutants of a yeast G-protein β subunit identify two functional regions involved in pheromone signalling. EMBO J. 11:4805–4813
  • Leberer, E., Thomas, D. Y., and Whiteway, M.. 1997. Pheromone signalling and polarized morphogenesis in yeast. Curr. Opin. Genet. Dev. 7:59–66
  • Leberer, E., Wu, C., Leeuw, T., Fourest-Lieuvin, A., Segall, J. E., and Thomas, D. Y.. 1997. Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO J. 16:83–97
  • Lee, R. H., Whelan, J. P., Lolley, R. N., and McGinnis, J. F.. 1988. The photoreceptor-specific 33 kDa phosphoprotein of mammalian retina: generation of monospecific antibodies and localization by immunocytochemistry. Exp. Eye Res. 46:829–840
  • Li, E., Cismowski, M. J., and Stone, D. E.. 1998. Phosphorylation of the pheromone-responsive Gβ protein of Saccharomyces cerevisiae does not affect its mating-specific signaling function. Mol. Gen. Genet. 258:608–618
  • Mahanty, S. K., Wang, Y., Farley, F. W., and Elion, E. A.. 1999. Nuclear shuttling of yeast scaffold Ste5 is required for its recruitment to the plasma membrane and activation of the mating MAPK cascade. Cell 98:501–512
  • Marcus, S., Caldwell, G. A., Miller, D., Xue, C.-B., Naider, R., and Becker, J. M.. 1991. Significance of C-terminal cysteine modifications to the biological activity of the Saccharomyces cerevisiaea-factor mating pheromone. Mol. Cell. Biol. 11:3603–3612
  • McCaffrey, G., Clay, F. J., Kelsay, K., Sprague, G. F.Jr.. 1987. Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7:2680–2690
  • Peter, M., Neiman, A. M., Park, H.-O., van Lohuizen, M., and Herskowitz, I.. 1996. Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J. 15:7046–7059
  • Phillips, W. J., and Cerione, R. A.. 1992. Rhodopsin/transducin interactions. I. Characterization of the binding of the transducin-βγ subunit complex to rhodopsin using fluorescence spectroscopy. J. Biol. Chem. 267:17032–17039
  • Pitcher, J. A., Inglese, J., Higgins, J. B., Arriza, J. L., Casey, P. J., Kim, C., Benovic, J. L., Kwatra, M. M., Caron, M. G., and Lefkowitz, R. J.. 1992. Role of βγ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Science 257:1264–1267
  • Pryciak, P. M., and Huntress, F. A.. 1998. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the Gβγ complex underlies activation of the yeast pheromone response pathway. Genes Dev. 12:2684–2697
  • Roth, A., Nelson, B., Boone, C., and Davis, N. G.. 2000. Asg7p-Ste3p repression of pheromone signaling: regulation of the zygotic transition to vegetative growth. Mol. Cell. Biol. 20:8815–8825
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Sherman, F., Fink, G. R., and Hicks, J. B.. 1989. 1989. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Plainview, N.Y
  • Sprague, G. F.Jr., and Thorner, J. W.. 1992. Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae The molecular and cellular biology of the yeast Saccharomyces: gene expression. Jones, E. W., Pringle, J. R., and Broach, J. R. 657–744 Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Taylor, J. M., Jacob-Mosier, G. G., Lawton, R. G., VanDort, M., and Neubig, R. R.. 1996. Receptor and membrane interaction sites on Gβ. J. Biol. Chem. 271:3336–3339
  • Wach, A.. 1996. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12:259–265
  • Wittenberg, C., and Reed, S. I.. 1996. Plugging it in: signaling circuits and the yeast cell cycle. Curr. Opin. Cell Biol. 8:223–230
  • Yoshida, T., Willardson, B. M., Wilkins, J. F., Jensen, G. J., Thornton, B. D., and Bitensky, M. W.. 1994. The phosphorylation state of phosducin determines its ability to block transducin subunit interactions and inhibit transducin binding to activated rhodopsin. J. Biol. Chem. 269:24050–24057
  • Zhong, H., McCord, R., and Vershon, A. K.. 1999. Identification of target sites of the α2-Mcm1 repressor complex in the yeast genome. Genome Res. 9:1040–1047

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.