54
Views
211
CrossRef citations to date
0
Altmetric
Nucleocytoplasmic Communication

Transforming Growth Factor β-Independent Shuttling of Smad4 between the Cytoplasm and Nucleus

, &
Pages 9041-9054 | Received 28 Jun 2000, Accepted 11 Sep 2000, Published online: 28 Mar 2023

REFERENCES

  • Chen, C. H., von Kessler, D. P., Park, W., Wang, B., Ma, Y., and Beachy, P. A.. 1999. Nuclear trafficking of Cubitus interruptus in the transcriptional regulation of Hedgehog target gene expression. Cell 98:305–316
  • Chen, X., Rubock, M. J., and Whitman, M.. 1996. A transcriptional partner for MAD proteins in TGF-β signalling. Nature 383:691–696
  • Chen, X., Weisberg, E., Fridmacher, V., Watanabe, M., Naco, G., and Whitman, M.. 1997. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389:85–89
  • de Caestecker, M. P., Hemmati, P., Larisch-Bloch, S., Ajmera, R., Roberts, A. B., and Lechleider, R. J.. 1997. Characterization of functional domains within Smad4/DPC4. J. Biol. Chem. 272:13690–13696
  • de Caestecker, M. P., Yahata, T., Wang, D., Parks, W. T., Huang, S., Hill, C. S., Shioda, T., Roberts, A. B., and Lechleider, R. J.. 2000. The Smad4 activation domain (SAD) is a proline-rich, p300-dependent transcriptional activation domain. J. Biol. Chem. 275:2115–2122
  • de Winter, J. P., Roelen, B. A., ten Dijke, P., van der Burg, B., and van den Eijnden-van Raaij, A. J.. 1997. DPC4 (SMAD4) mediates transforming growth factor-β1 (TGF-β1) induced growth inhibition and transcriptional response in breast tumour cells. Oncogene 14:1891–1899
  • Dingwall, C., and Laskey, R. A.. 1991. Nuclear targeting sequences—a consensus? Trends Biochem. Sci. 16:478–481
  • Dong, C., Li, Z., Alvarez, R.Jr., Feng, X. H., and Goldschmidt-Clermont, P. J.. 2000. Microtubule binding to Smads may regulate TGFβ activity. Mol. Cell 5:27–34
  • Enoch, T., Zinn, K., and Maniatis, T.. 1986. Activation of the human β-interferon gene requires an interferon-inducible factor. Mol. Cell. Biol. 6:801–810
  • Germain, S., Howell, M., Esslemont, G. M., and Hill, C. S.. 2000. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 14:435–451
  • Gorelik, L., and Flavell, R. A.. 2000. Abrogation of TGFβ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 12:171–181
  • Görlich, D., and Kutay, U.. 1999. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15:607–660
  • Hahn, S. A., Schutte, M., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., Weinstein, C. L., Fischer, A., Yeo, C. J., Hruban, R. H., and Kern, S. E.. 1996. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353
  • Hata, A., Lo, R. S., Wotton, D., Lagna, G., and Massagué, J.. 1997. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 388:82–87
  • Hata, A., Seoane, J., Lagna, G., Montalvo, E., Hemmati-Brivanlou, A., and Massagué, J.. 2000. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100:229–240
  • Heldin, C. H., and ten Dijke, P.. 1999. SMAD destruction turns off signalling. Nat. Cell Biol. 1:E195–E197
  • Hill, C. S., Wynne, J., and Treisman, R.. 1995. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170
  • Howell, M., Itoh, F., Pierreux, C. E., Valgeirsdottir, S., Itoh, S., ten Dijke, P., and Hill, C. S.. 1999. Xenopus Smad4β is the co-Smad component of developmentally-regulated transcription factor complexes responsible for induction of early mesodermal genes. Dev. Biol. 214:354–369
  • Huang, H.-C., Murtaugh, L. C., Vize, P. D., and Whitman, M.. 1995. Identification of a potential regulator of early transcriptional responses to mesoderm inducers in the frog embryo. EMBO J. 14:5965–5973
  • Jensen, J., Serup, P., Karlsen, C., Nielsen, T. F., and Madsen, O. D.. 1996. mRNA profiling of rat islet tumors reveals nkx 6.1 as a β-cell-specific homeodomain transcription factor. J. Biol. Chem. 271:18749–18758
  • Johnson, C., Van Antwerp, D., and Hope, T. J.. 1999. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IκBα. EMBO J. 18:6682–6693
  • Jonk, L. J., Itoh, S., Heldin, C. H., ten Dijke, P., and Kruijer, W.. 1998. Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-β, activin, and bone morphogenetic protein-inducible enhancer. J. Biol. Chem. 273:21145–21152
  • Kaffman, A., and O'Shea, E. K.. 1999. Regulation of nuclear localization: a key to a door. Annu. Rev. Cell Dev. Biol. 15:291–339
  • Kageyama, H., Seki, N., Yamada, S., Sakiyama, S., and Nakagawara, A.. 1998. DPC4 splice variants in neuroblastoma. Cancer Lett. 122:187–193
  • Kretzschmar, M., Doody, J., and Massagué, J.. 1997. Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1. Nature 389:618–622
  • Kretzschmar, M., Doody, J., Timokhina, I., and Massagué, J.. 1999. A mechanism of repression of TGFβ/Smad signaling by oncogenic Ras. Genes Dev. 13:804–816
  • Liu, F., Pouponnot, C., and Massagué, J.. 1997. Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes. Genes Dev. 11:3157–3167
  • Lo, R. S., and Massagué, J.. 1999. Ubiquitin-dependent degradation of TGF-β-activated Smad2. Nat. Cell Biol. 1:472–478
  • Massagué, J.. 1998. TGF-β signal transduction. Annu. Rev. Biochem. 67:753–791
  • Massagué, J., and Wotton, D.. 2000. Transcriptional control by the TGF-β/Smad signaling system. EMBO J. 19:1745–1754
  • Masuyama, N., Hanafusa, H., Kusakabe, M., Shibuya, H., and Nishida, E.. 1999. Identification of two Smad4 proteins in Xenopus. Their common and distinct properties. J. Biol. Chem. 274:12163–12170
  • Nakao, A., Imamura, T., Souchelnytskyi, S., Kawabata, M., Ishisaki, A., Oeda, E., Tamaki, K., Hanai, J., Heldin, C. H., Miyazono, K., and ten Dijke, P.. 1997. TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J. 16:5353–5362
  • Nigg, E. A.. 1997. Nucleocytoplasmic transport: signals, mechanisms and regulation. Nature 386:779–787
  • Nishi, K., Yoshida, M., Fujiwara, D., Nishikawa, M., Horinouchi, S., and Beppu, T.. 1994. Leptomycin B targets a regulatory cascade of crm1, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J. Biol. Chem. 269:6320–6324
  • Patterson, G. I., Koweek, A., Wong, A., Liu, Y., and Ruvkun, G.. 1997. The DAF-3 Smad protein antagonizes TGF-β-related receptor signaling in the Caenorhabditis elegans dauer pathway. Genes Dev. 11:2679–2690
  • Schutte, M., Hruban, R. H., Hedrick, L., Cho, K. R., Nadasdy, G. M., Weinstein, C. L., Bova, G. S., Isaacs, W. B., Cairns, P., Nawroz, H., Sidransky, D., Casero, R. A.Jr., Meltzer, P. S., Hahn, S. A., and Kern, S. E.. 1996. DPC4 gene in various tumor types. Cancer Res. 56:2527–2530
  • Sotiropoulos, A., Gineitis, D., Copeland, J., and Treisman, R.. 1999. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98:159–169
  • Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q., and Luo, K.. 1999. Negative feedback regulation of TGF-β signaling by the SnoN oncoprotein. Science 286:771–774
  • Sun, Y., Liu, X., Ng-Eaton, E., Lodish, H. F., and Weinberg, R. A.. 1999. SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor β signaling. Proc. Natl. Acad. Sci. USA 96:12442–12447
  • ten Dijke, P., Miyazono, K., and Heldin, C. H.. 2000. Signaling inputs converge on nuclear effectors in TGF-β signaling. Trends Biochem. Sci. 25:64–70
  • Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L., and Wrana, J. L.. 1998. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95:779–791
  • Tsukita, S., and Yonemura, S.. 1999. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J. Biol. Chem. 274:34507–34510
  • van Hengel, J., Vanhoenacker, P., Staes, K., and van Roy, F.. 1999. Nuclear localization of the p120(ctn) Armadillo-like catenin is counteracted by a nuclear export signal and by E-cadherin expression. Proc. Natl. Acad. Sci. USA 96:7980–7985
  • Whitman, M.. 1998. Smads and early developmental signaling by the TGFβ superfamily. Genes Dev. 12:2445–2462
  • Wieser, R., Wrana, J. L., and Massagué, J.. 1995. GS domain mutations that constitutively activate TβR-I, the downstream signaling component in the TGF-β receptor complex. EMBO J. 14:2199–2208
  • Wong, C., Rougier-Chapman, E. M., Frederick, J. P., Datto, M. B., Liberati, N. T., Li, J. M., and Wang, X. F.. 1999. Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor β. Mol. Cell. Biol. 19:1821–1830
  • Wu, R.-Y., Zhang, Y., Feng, X.-H., and Derynck, R.. 1997. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol. Cell. Biol. 17:2521–2528
  • Xiao, Z., Liu, X., and Lodish, H. F.. 2000. Importin β mediates nuclear translocation of Smad3. J. Biol. Chem. 275:23425–23428
  • Yagi, K., Goto, D., Hamamoto, T., Takenoshita, S., Kato, M., and Miyazono, K.. 1999. Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3. J. Biol. Chem. 274:703–709
  • Zhu, H., Kavsak, P., Abdollah, S., Wrana, J. L., and Thomsen, G. H.. 1999. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400:687–693

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.