24
Views
48
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

TFIIS Enhances Transcriptional Elongation through an Artificial Arrest Site In Vivo

&
Pages 4162-4168 | Received 07 Feb 2001, Accepted 09 Apr 2001, Published online: 28 Mar 2023

REFERENCES

  • Akhtar, A., G. Faye, and D. L. Bentley. 1996. Distinct activated and non-activated RNA polymerase II complexes in yeast. EMBO J. 15:4654–4664.
  • Archambault, J., F. Lacroute, A. Ruet, and J. D. Friesen. 1992. Genetic interaction between transcription elongation factor TFIIS and RNA polymerase II. Mol. Cell. Biol. 12:4142–4152.
  • Bentley, D. L.. 1995. Regulation of transcriptional elongation by RNA polymerase II. Curr. Opin. Genet. Dev. 5:210–216.
  • Breul, A., W. Kuchinke, B. von Wilcken-Bergmann, and B. Muller-Hill. 1991. Linker mutagenesis in the lacZ gene of Escherichia coli yields variants of active b-galactosidase. Eur. J. Biochem. 195:191–194.
  • Chavez, S., and A. Aguilera. 1997. The yeast HPR1 gene has a functional role in transcriptional elongation that uncovers a novel source of genome instability. Genes Dev. 11:3459–3470.
  • Chavez, S., T. Beilharz, A. G. Rondon, H. Erdjument-Bromage, P. Tempst, J. Q. Svejstrup, T. Lithgow, and A. Aguilera. 2000. A protein complex containing Tho2, Hpr1, Mft1, and a novel protein Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J. 19:5824–5834.
  • Davie, J. K., and C. M. Kane. 2000. Genetic interactions between TFIIS and the Swi/Snf chromatin remodeling complex. Mol. Cell. Biol. 20:5960–5973.
  • Exinger, F., and F. Lacroute. 1992. 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae. Curr. Genet. 22:9–11.
  • Feliu, J. X., and A. Villaverde. 1998. Engineering of solvent-exposed loops in Escherichia coli b-galactosidase. FEBS Lett. 434:23–27.
  • Gallardo, M., and A. Aguilera. 2001. A new hyperrecombination mutation identifies a novel yeast gene, THP1, connecting transcription elongation with mitotic recombination. Genetics 157:79–89.
  • Geisberg, J. V., F. C. Holstege, R. A. Young, and K. Struhl. 2001. Yeast NC2 associates with the RNA polymerase II preinitiation complex and selectively affects transcription in vivo. Mol. Cell. Biol. 21:2736–2742.
  • Hartzog, G. A., T. Wada, H. Handa, and F. Winston. 1998. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12:357–369.
  • Hausner, W., U. Lange, and M. Musfeldt. 2000. Transcription factor S, a cleavage induction factor of the archaeal RNA polymerase. J. Biol. Chem. 275:12393–12399.
  • Hemming, S. A., D. B. Jansma, P. F. Macgregor, A. Goryachev, J. D. Friesen, and A. M. Edwards. 2000. RNA polymerase II subunit Rpb9 regulates transcription elongation in vivo. J. Biol. Chem. 275:35506–35511.
  • Ishiguro, A., Y. Nogi, K. Hisatake, M. Muramatsu, and A. Ishihama. 2000. The Rpb6 subunit of fission yeast RNA polymerase is a contact target of the transcription elongation factor TFIIS. Mol. Cell. Biol. 20:1263–1270.
  • Iyer, V., and K. Struhl. 1996. Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5208–5212.
  • Jeon, C., and K. Agarwal. 1996. Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc. Natl. Acad. Sci. USA 93:13677–13682.
  • Kadosh, D., and K. Struhl. 1998. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell. Biol. 18:5121–5127.
  • Kireeva, M. L., N. Komissarova, D. S. Waugh, and M. Kashlev. 2000. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 275:6530–6536.
  • Komarnitsky, P., E.-J. Cho, and S. Buratowski. 2000. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14:2452–2460.
  • Komissarova, N., and M. Kashlev. 1997. RNA polymerase switches between inactivated and activated states by translocating back and forth along the DNA and the RNA. J. Biol. Chem. 272:15329–15338.
  • Kulish, D., J. Lee, I. Lomakin, B. Nowicka, A. Das, S. Darst, K. Normet, and S. Borukhov. 2000. The functional role of basic patch, a structural element of Escherichia coli transcript cleavage factors GreA and GreB. J. Biol. Chem. 275:12789–12898.
  • Kuras, L., and K. Struhl. 1999. Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme. Nature 389:609–612.
  • Landick, R.. 1997. RNA polymerase slides home: pause and termination site recognition. Cell 88:741–744.
  • Lennon, J. C., M. Wind, L. Saunders, M. B. Hock, and D. Reines. 1998. Mutations in RNA polymerase II and elongation factor SII severely reduce mRNA levels in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:5771–5779.
  • Mote, J., and D. Reines. 1998. Recognition of a human arrest site is conserved between RNA polymerase II and prokaryotic RNA polymerases. J. Biol. Chem. 273:16843–16852.
  • Nakanishi, T., M. Shimoaraiso, T. Kubo, and S. Natori. 1995. Structure-function relationship of yeast S-II in terms of stimulation of RNA polymerase II, arrest relief, and suppression of 6-azauracil sensitivity. J. Biol. Chem. 270:8991–8995.
  • Nudler, E., A. Goldfarb, and M. Kashlev. 1994. Discontinuous mechanism of transcription elongation. Science 265:793–796.
  • Nudler, E., A. Mustaev, E. Lukhtanov, and A. Goldfarb. 1997. The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89:33–41.
  • Orphanides, G., W.-H. Wu, W. S. Lane, M. Hampsey, and D. Reinberg. 1999. The chromatin-specific transcription elongation factor FACT comprises human Spt16 and SSRP1 proteins. Nature 400:284–288.
  • Otero, G., J. Fellows, Y. Li, T. de Bizemont, A. M. Dirac, C. M. Gustafsson, H. Erdjument-Bromage, P. Tempst, and J. Q. Svejstrup. 1999. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol. Cell 3:109–118.
  • Piraut, J. I., and A. Aguilera. 1998. A novel yeast gene, THO2, is involved in RNA Pol II transcription and provides new evidence for transcriptional elongation-associated recombination. EMBO J. 17:4859–4872.
  • Prado, F., J. I. Piruat, and A. Aguilera. 1997. Recombination between DNA repeats in yeast hpr1Δ cells is linked to transcription elongation. EMBO J. 16:2826–2835.
  • Shaw, R. J., and D. Reines. 2000. Saccharomyces cerevisiae transcription elongation mutants are defective in PUR5 induction in response to nucleotide depletion. Mol. Cell. Biol. 20:7427–7437.
  • Shimoaraiso, M., T. Nakanishi, T. Kubo, and S. Natori. 2000. Transcription elongation factor S-II confers yeast resistance to 6-azauracil by enhancing expression of the SSM1 gene. J. Biol. Chem. 275:29623–29627.
  • Thomas, M. J., A. A. Ptatas, and D. K. Hawley. 1998. Transcriptional fidelity and proofreading by RNA polymerase II. Cell 93:627–637.
  • Toulme, F., M. Guerin, N. Robichon, M. Leng, and A. R. Rahmouni. 1999. In vivo evidence for back and forth oscillations of the transcription elongation complex. EMBO J. 18:5052–5060.
  • Uptain, S. M., C. M. Kane, and M. J. Chamberlin. 1997. Basic mechanisms of transcript elongation and its regulation. Annu. Rev. Biochem. 66:117–172.
  • von Hippel, P. H.. 1998. An integrated model of the transcription complex in elongation, termination, and editing. Science 281:660–665.
  • Wada, T., T. Talagi, Y. Yamaguchi, A. Ferdous, T. Imai, S. Hirose, S. Sugimoto, K. Yano, G. A. Hartzog, F. Winston, S. Buratowski, and H. Handa. 1998. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity is composed of human Spt4 and Spt5 homologs. Genes Dev. 12:343–356.
  • Wind, M., and D. Reines. 2000. Transcription elongation factor SII. Bioessays 22:327–336.
  • Yocum, R. R., S. Hanley, R. West, and M. Ptashne. 1984. Use of lacZ fusions to delimit regulatory elements of the inducible divergent GAL1-GAL10 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1985–1998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.