61
Views
245
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Saccharomyces cerevisiae CTF18 and CTF4 Are Required for Sister Chromatid Cohesion

, , &
Pages 3144-3158 | Received 04 Dec 2000, Accepted 08 Feb 2001, Published online: 28 Mar 2023

REFERENCES

  • Amin, N. S., K. M. Tuffo, and C. Holm. 1999. Dominant mutations in three different subunits of replication factor C suppress replication defects in yeast PCNA. Genetics 153:1617–1628.
  • Aparicio, O. M., D. M. Weinstein, and S. P. Bell. 1997. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91:59–69.
  • Aravind, L., and E. V. Koonin. 1999. DNA polymerase beta-like nucleotidyltransferase superfamily: identification of three new families, classification and evolutionary history. Nucleic Acids Res. 27:1609–1618.
  • Ayyagari, R., K. J. Impellizzeri, B. L. Yoder, S. L. Gary, and P. M. Burgers. 1995. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol. Cell. Biol. 15:4420–4429.
  • Beckwith, W., and M. A. McAlear. 2000. Allele-specific interactions between the yeast RFC1 and RFC5 genes suggest a basis for RFC subunit-subunit interactions. Mol. Gen. Genet. 264:378–391.
  • Bhatt, A. M., C. Lister, T. Page, P. Fransz, K. Findlay, G. H. Jones, H. G. Dickinson, and C. Dean. 1999. The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesion gene family. Plant J. 19:463–472.
  • Birkenbihl, R. P., and S. Subramani. 1992. Cloning and characterization of rad21 an essential gene of Schizosaccharomyces pombe involved in DNA double-strand-break repair. Nucleic Acids Res. 20:6605–6611.
  • Birkenbihl, R. P., and S. Subramani. 1995. The rad21 gene product of Schizosaccharomyces pombe is a nuclear, cell cycle-regulated phosphoprotein. J. Biol. Chem. 270:7703–7711.
  • Blat, Y., and N. Kleckner. 1999. Cohesins bind to preferential sites along yeast chromosome III, with differential regulation along arms versus the centric region. Cell 98:249–259.
  • Brachmann, C. B., A. Davies, G. J. Cost, E. Caputo, J. Li, P. Hieter, and J. D. Boeke. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132.
  • Budd, M. E., and J. L. Campbell. 1997. A yeast replicative DNA helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol. Cell. Biol. 17:2136–2142.
  • Burgess, S. M., and N. Kleckner. 1999. Collisions between yeast chromosomal loci in vivo are governed by three layers of organization. Genes Dev. 13:1871–1883.
  • Burgess, S. M., N. Kleckner, and B. M. Weiner. 1999. Somatic pairing of homologs in budding yeast: existence and modulation. Genes Dev. 13:1627–1641.
  • Castano, I. B., P. M. Brzoska, B. U. Sadoff, H. Chen, and M. F. Christman. 1996. Mitotic chromosome condensation in the rDNA requires TRF4 and DNA topoisomerase I in Saccharomyces cerevisiae. Genes Dev. 10:2564–2576.
  • Castano, I. B., S. Heath-Pagliuso, B. U. Sadoff, D. J. Fitzhugh, and M. F. Christman. 1996. A novel family of TRF (DNA topoisomerase I-related function) genes required for proper nuclear segregation. Nucleic Acids Res. 24:2404–2410.
  • Ciosk, R., M. Shirayama, A. Shevchenko, T. Tanaka, A. Toth, A. Shevchenko, and K. Nasmyth. 2000. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell 5:243–254.
  • Cullmann, G., F. Fien, R. Kobayashi, and B. Stillman. 1995. Characterization of the fivereplication factor C genes of Saccharomyces cerevisiae. Mol. Cell. Biol. 15:4661–4671.
  • Darwiche, N., L. A. Freeman, and A. Strunnikov. 1999. Characterization of the components of the putative mammalian sister chromatid cohesion complex. Gene 233:39–47.
  • Davey, M. J., and M. O'Donnell. 2000. Mechanisms of DNA replication. Curr. Opin. Chem. Biol. 4:581–586.
  • Ehrenhofer-Murray, A. E., R. T. Kamakaka, and J. Rine. 1999. A role for the replication proteins PCNA, RF-C, polymerase epsilon and cdc45 in transcriptional silencing in Saccharomyces cerevisiae. Genetics 153:1171–1182.
  • Enright, A. J., I. Iliopoulos, N. C. Kyrpides, and C. A. Ouzounis. 1999. Protein interaction maps for complete genomes based on gene fusion events. Nature 402:86–90.
  • Evans, S. K., and V. Lundblad. 2000. Positive and negative regulation of telomerase access to the telomere. J. Cell Sci. 113:3357–3364.
  • Fien, K., and B. Stillman. 1992. Identification of replication factor C from Saccharomyces cerevisiae: a component of the leading-strand DNA replication complex. Mol. Cell. Biol. 12:155–163.
  • Formosa, T., and T. Nittis. 1999. Dna2 mutants reveal interactions with Dna polymerase alpha and Ctf4, a Pol alpha accessory factor, and show that full Dna2 helicase activity is not essential for growth. Genetics 151:1459–1470.
  • Friedman, D. B., N. M. Hollingsworth, and B. Byers. 1994. Insertional mutations in the yeast HOP1 gene: evidence for multimeric assembly in meiosis. Genetics 136:449–464.
  • Furuya, K., K. Takahashi, and M. Yanagida. 1998. Faithful anaphase is ensured by Mis4, a sister chromatid cohesion molecule required in S phase and not destroyed in G1 phase. Genes Dev. 12:3408–3418.
  • Gary, R., M. S. Park, J. P. Nolan, H. L. Cornelius, O. G. Kozyreva, H. T. Tran, K. S. Lobachev, M. A. Resnick, and D. A. Gordenin. 1999. A novel role in DNA metabolism for the binding of Fen1/Rad27 to PCNA and implications for genetic risk. Mol. Cell. Biol. 19:5373–1582.
  • Gerik, K. J., S. L. Gary, and P. M. Burgers. 1997. Overproduction and affinity purification of Saccharomyces replication factor C. J. Biol. Chem. 272:1256–1262.
  • Gietz, R. D., and R. A. Woods. Genetic transformation of yeast. BioTechniques, in press.
  • Goshima, G., and M. Yanagida. 2000. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100:619–633.
  • Green, C. M., H. Erdjument-Bromage, P. Tempst, and N. F. Lowndes. 1999. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr. Biol. 10:39–42.
  • Guacci, V., E. Hogan, and D. Koshland. 1994. Chromosome condensation and sister chromatid pairing in budding yeast. J. Cell Biol. 125:517–530.
  • Guacci, V., D. Koshland, and A. Strunnikov. 1997. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47–57.
  • Guthrie, C., and G. Fink. 1991. Guide to yeast genetics and molecular biology. Academic Press, Inc., New York, N.Y
  • Harris, S. D., and J. E. Hamer. 1995. sepB: an Aspergillus nidulans gene involved in chromosome segregation and the initiation of cytokinesis. EMBO J. 14:5244–5257.
  • Hartman, T., K. Stead, D. Koshland, and V. Guacci. 2000. Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J. Cell Biol. 151:613–626.
  • He, X., S. Asthana, and P. K. Sorger. 2000. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101:763–775.
  • Heo, S.-J., K. Tatebayashi, J. Kato, and H. Ikeda. 1998. The RHC21 gene of budding yeast, a homologue of the fission yeast rad21+ gene, is essential for chromosome segregation. Mol. Gen. Genet. 257:149–156.
  • Hingorani, M. M., and M. O'Donnell. 2000. Sliding clamps: a (tail)ored fit. Curr. Biol. 10:R25–R29.
  • Hirano, T., and T. J. Mitchison. 1994. A heterodimeric coiled-coli protein required for mitotic chromosome condensation in vitro. Cell 79:449–458.
  • Hirano, T., R. Kobayashi, and M. Hirano. 1997. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521.
  • Howell, E. A., M. A. McAlear, D. Rose, and C. Holm. 1994. CDC44: a putative nucleotide-binding protein required for cell cycle progression that has homology to subunits of replication factor C. Mol. Cell. Biol. 14:255–267.
  • Hubscher, U., H. Nasheuer, and J. Syvaoja. 2000. Eukaryotic DNA polymerases, a growing family. Trends Biochem. Sci. 25:143–147.
  • Jeanmougin, F., J. D. Thompson, M. Gouy, D. G. Higgins, and T. J. Gibson. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23:403–405.
  • Jessberger, R., B. Riwar, H. Baechtold, and A. T. Akhmedov. 1996a. SMC proteins constitute two subunits of the mammalian recombination complex RC-1. EMBO J. 15:4061–4068.
  • Jessberger, R., G. Chui, S. Linn, and B. Kemper. 1996. Analysis of the mammalian recombination protein complex RC-1. Mutat. Res. 350:217–227.
  • Kelman, Z.. 1997. PCNA: structure, functions and interactions. Oncogene 14:629–640.
  • Klein, F., T. Laroche, M. E. Cardenas, J. F. Hofmann, D. Schweizer, and S. M. Gasser. 1992. Localization of RAP1 and topoisomerase II in nuclei and meiotic chromosomes of yeast. J. Cell Biol. 117:935–948.
  • Knop, M., K. Siegers, G. Pereira, W. Zachariae, B. Winsor, K. Nasmyth, and E. Schiebel. 1999. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972.
  • Koshland, D. E., and V. Guacci. 2000. Sister chromatid cohesion: the beginning of a long and beautiful relationship. Curr. Opin. Cell Biol. 12:297–301.
  • Kouprina, N., E. Kroll, V. Bannikov, V. Bliskovsky, R. Gizatullin, A. Kirillov, B. Shestopalov, V. Zakharyev, P. Hieter, F. Spencer, and V. Larionov. 1992. CTF4 (CHL15) mutants exhibit defective DNA metabolism in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 12:5736–5747.
  • Kouprina, N., A. Tsouladze, M. Koryabin, P. Hieter, F. Spencer, and V. Larionov. 1993. Identification and genetic mapping of CHL genes controlling mitotic chromosome transmission in yeast. Yeast 9:11–19.
  • Kouprina, N., E. Kroll, A. Kirillov, V. Bannikov, V. Zakharyev, and V. Larionov. 1994. CHL12, a gene essential for the fidelity of chromosome transmission in the yeast Saccharomyces cerevisiae. Genetics 138:1067–1079.
  • Kroll, E. S., K. M. Hyland, P. Hieter, and J. J. Li. 1996. Establishing genetic interactions by a synthetic dosage lethality phenotype. Genetics 143:95–102.
  • Li, J. J., and I. Herskowitz. 1993. Isolation of ORC6, a component of the yeast origin recognition complex by a one-hybrid system. Science 262:1870–1874.
  • Li, X., J. Li, J. Harrington, M. R. Lieber, and P. M. Burgers. 1995. Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J. Biol. Chem. 270:22109–22112.
  • Liang, C., and B. Stillman. 1997. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 11:3375–3386.
  • Losada, A., M. Hirano, and T. Hirano. 1998. Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev. 12:1986–1997.
  • Losada, A., T. Yokochi, R. Kobayashi, and T. Hirano. 2000. Identification and characterization of SA/Scc3p subunits in the Xenopus and human cohesin complexes. J. Cell Biol. 150:405–416.
  • Lundblad, V., and E. H. Blackburn. 1993. An alternative pathway for yeast telomere maintenance rescues est1− senescence. Cell 73:347–360.
  • Lustig, A. J., S. Kurtz, and D. Shore. 1990. Involvement of the silencer and UAS binding protein RAP1 in regulation of telomere length. Science 250:549–553.
  • Lydall, D., and T. Weinert. 1997. G2/M checkpoint genes of Saccharomyces cerevisiae: further evidence for roles in DNA replication and/or repair. Mol. Gen. Genet. 256:638–651.
  • Marcotte, E. M., M. Pellegrini, H. Ng, D. W. Rice, T. O. Yeates, and D. Eisenberg. 1999. Detecting protein function and protein-protein interactions from genome sequences. Science 280:751–753.
  • Masai, H., N. Sato, T. Takeda, and K. Arai. 1999. CDC7 kinase complex as a molecular switch for DNA replication. Front. Biosci. 4:834–840.
  • McAlear, M. A., E. A. Howell, K. K. Espenshade, and C. Holm. 1994. Proliferating cellnuclear antigen (pol30) mutations suppress cdc44 mutations and identify potential regions of interaction between the two encoded proteins. Mol. Cell. Biol. 14:4390–4397.
  • Megee, P. C., C. Mistrot, V. Guacci, and D. Koshland. 1999. The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol. Cell 4:445–450.
  • Merrill, B. J., and C. Holm. 1998. The RAD52 recombinational repair pathway is essential in pol30 (PCNA) mutants that accumulate small single-stranded DNA fragments during DNA synthesis. Genetics 148:611–624.
  • Michaelis, C., R. Ciosk, and K. Nasmyth. 1997. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35–45.
  • Miles, J., and T. Formosa. 1992. Evidence that POB1, a Saccharomyces cerevisiae protein that binds to DNA polymerase alpha, acts in DNA metabolism in vivo. Mol. Cell. Biol. 12:5724–5735.
  • Morgan, D. O.. 1999. Regulation of the APC and the exit from mitosis. Nat. Cell Biol. 1:E47–E53.
  • Mossi, R., and U. Hubscher. 1998. Clamping down on clamps and clamp loaders—the eukaryotic replication factor C. Eur. J. Biochem. 254:209–216.
  • Nasmyth, K.. 1999. Separating sister chromatids. Trends Biochem. Sci. 24:98–104.
  • Nasmyth, K., J. M. Peters, and F. Uhlmann. 2000. Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288:1379–1385.
  • Nigro, J. M., R. Sikorski, S. I. Reed, and B. Vogelstein. 1992. Human p53 and CDC2Hs genes combine to inhibit the proliferation of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:1357–1365.
  • Noskov, V. N., H. Araki, and A. Sugino. 1998. The RFC2 gene, encoding the third-largest subunit of the replication factor-C complex, is required for an S-phase checkpoint in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:4914–4923.
  • Nugent, C. I., and V. Lundblad. 1998. The telomerase reverse transcriptase: components and regulation. Genes Dev. 12:1073–1085.
  • Orr-Weaver, T. L.. 1999. The ties that bind: localization of the sister chromatid cohesin complex on yeast chromosomes. Cell 99:1–4.
  • Panizza, S., T. Tanaka, A. Hochwagen, F. Eisenhaber, and K. Nasmyth. 2000. Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr. Biol. 10:1557–1564.
  • Prescott, J., and E. H. Blackburn. 1997. Functionally interacting telomerase RNAs in the yeast telomerase. Genes Dev. 11:2790–2800.
  • Rauen, M., M. A. Burtelow, V. M. Default, and L. M. Karnitz. 2000. The human checkpoint protein hRad17 interacts with the PCNA-like proteins hRad1, hHus1, and hRAD9. J. Biol. Chem 275:29767–29771.
  • Rollins, R. A., P. Morcillo, and D. Dorsett. 1999. Nipped-B, a Drosophila homologue of chromosomal adherins, participates in activation by remote enhancers in the cut and Ultrabithorax genes. Genetics 152:577–593.
  • Schmiesing, J. A., A. R. Ball, H. C. Gregson, J. M. Alderton, S. Zhou, and K. Yokomori. 1998. Identification of two distinct human SMC protein complexes involved in mitotic chromosome dynamics. Proc. Natl. Acad. Sci. USA 95:12906–12911.
  • Seitz, L. C., K. Tang, W. J. Cummings, and M. E. Zolan. 1996. The rad9 gene of Coprinus cinereus encodes a proline-rich protein required for meiotic chromosome condensation and synapsis. Genetics 142:1105–1117.
  • Shampay, J., and E. H. Blackburn. 1988. Generation of telomere-length heterogeneity in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 85:534–538.
  • Shimomura, T., S. Ando, K. Matsumoto, and K. Sugimoto. 1998. Functional and physical interaction between RAD24 and RFC5 in the yeast checkpoint pathways. Mol. Cell. Biol. 18:5485–5491.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Skibbens, R. V., and P. Hieter. 1998. Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery. Annu. Rev. Genet. 32:307–337.
  • Skibbens, R. V., L. B. Corson, D. Koshland, and P. Hieter. 1999. Ctf7p is essential for sister chromatid cohesion and links mitoticchromosome structure to the DNA replication machinery. Genes Dev. 13:307–319.
  • Skibbens, R. V.. 2000. Holding your own: establishing sister chromatid cohesion. Genome Res. 10:1664–1671.
  • Smith, J. S., E. Caputo, and J. D. Boeke. 1999. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors Mol. Cell. Biol. 19:3184–3197.
  • Spellman, P. T., G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9:3273–3297.
  • Spencer, F., S. L. Gerring, C. Connelly, and P. Hieter. 1990. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics 124:237–249.
  • Straight, A. F., A. S. Belmont, C. C. Robinett, and A. W. Murray. 1996. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6:1599–1608.
  • Sugimoto, K., A. Seiko, T. Shimomura, and K. Matsumoto. 1997. Rfc5, a replication factor C component, is required for regulation of Rad53 protein kinase in the yeast checkpoint pathway. Mol. Cell. Biol. 17:5905–5914.
  • Sumara, I., E. Vorlaufer, C. Gieffers, B. H. Peters, and J.-M. Peters. 2000. Characterization of vertebrate cohesin complexes and their regulation in prophase. J Cell Biol. 151:749–761.
  • Takahashi, K., and M. Yanagida. 2000. Cell cycle. Replication meets cohesion. Science 289:735–736.
  • Tanaka, K., T. Yonekawa, Y. Kawasaki, M. Kai, K. Furuya, M. Iwasaki, H. Murakami, M. Yanagida, and H. Okayama. 2000. Fission yeast Eso1p is required for establishing sister chromatid cohesion during S phase. Mol. Cell. Biol. 20:3459–3469.
  • Tanaka, T., M. P. Cosma, K. Wirth, and K. Nasmyth. 1999. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98:847–858.
  • Tanaka, T., K. Tanaka, H. Murakami, and H. Okayama. 1999. Fission yeast cdc24 is a replication factor C- and proliferating cell nuclear antigen-interacting factor essential for S-phase completion. Mol. Cell. Biol. 19:1038–1048.
  • Tanaka, T., J. Fuchs, J. Loidl, and K. Nasmyth. 2000. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat. Cell Biol. 2:492–499.
  • Tomonaga, T., K. Nagao, Y. Kawasaki, K. Furuya, A. Murakami, J. Morishita, T. Yuasa, T. Sutani, S. E. Kearsey, F. Uhlmann, K. Nasmyth, and M. Yanagida. 2000. Characterization of fission yeast cohesin: essential anaphase proteolysis of Rad21 phosphorylated in the S phase. Genes Dev. 14:2757–2770.
  • Toth, A., R. Ciosk, F. Uhlmann, M. Galova, A. Schleiffer, and K. Nasmyth. 1999. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev. 13:320–333.
  • Uhlmann, F., and K. Nasmyth. 1998. Cohesion between sister chromatids must be established during DNA replication. Curr. Biol. 8:1095–1101.
  • Uhlmann, F., J. Cai, E. Gibbs, M. O'Donnell, and J. Hurwitz. 1997. Deletion analysis of the large subunit p140 in human replication factor C reveals regions required for complex formation and replication activities. J. Biol. Chem. 272:10058–10064.
  • Uhlmann, F., F. Lottspeich, and K. Nasmyth. 1999. Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400:37–42.
  • Venclovas, C., and M. P. Thelen. 2000. Structure-based predictions of Rad1, Rad9, Hus1, and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 28:2481–2493.
  • Waga, S., and B. Stillman. 1994. Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369:207–212.
  • Waizenegger, I. C., S. Hauf, A. Meinke, and J. M. Peters. 2000. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410.
  • Wang, Z., I. B. Castano, A. De Las Penas, C. Adams, and M. F. Christman. 2000. Pol kappa: A DNA polymerase required for sister chromatid cohesion. Science 289:774–779.
  • Warren, W. D., E. Lin, T. V. Nheu, G. R. Hime, and M. J. McKay. 2000. Drad21, a Drosophila rad21 homologue expressed in S-phase cells. Gene 250:77–84.
  • Watanabe, Y., and P. Nurse. 1999. Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400:461–464.
  • Weinert, T.. 1998. DNA damage and checkpoint pathways: molecular anatomy and interactions with repair. Cell 94:555–558.
  • Wittmeyer, J., and T. Formosa. 1997. The Saccharomyces DNA polymerase alpha catalytic subunit interacts with CDC68/SPT16, andwith POB3, a protein similar to an HMG-1-like protein. Mol. Cell. Biol. 17:4178–4190.
  • Wittmeyer, J., L. Joss, and T. Formosa. 1999. Spt16 and Pob3 of Saccharomyces cerevisiae form an essential, abundant heterodimer that is nuclear, chromatin-associated, and copurifies with DNA polymerase alpha. Biochemistry 38:8961–8971.
  • Xie, Y., C. Counter, and E. Alani. 1999. Characterization of the repeat-tract instability and mutator phenotypes conferred by a Tn3 insertion in RFC1, the large subunit of the yeast clamp loader. Genetics 151:499–509.
  • Yan, H., S. Gibson, and B. K. Tye. 1991. Mcm2 and Mcm3, two proteins important for ARS activity, are related in structure and function. Genes Dev. 5:944–957.
  • Yanagida, M.. 2000. Cell cycle mechanisms of sister chromatid separation; roles of Cut1/separin and Cut2/securin. Genes Cells 5:1–8.
  • Yuzhakov, A., Z. Kelman, and M. O'Donnell. 1999. Trading places on DNA—a three-point switch underlies primer handoff from primase to the replicative DNA polymerase. Cell 96:153–163.
  • Yuzhakov, A., Z. Kelman, J. Hurwitz, and M. O'Donnell. 1999. Multiple competition reactions for RPA order the assembly of the DNA polymerase delta holoenzyme. EMBO J. 18:6189–6199.
  • Zhao, X., E. G. Muller, and R. Rothstein. 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2:329–340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.