90
Views
496
CrossRef citations to date
0
Altmetric
Minireview

How Selenium Has Altered Our Understanding of the Genetic Code

&
Pages 3565-3576 | Published online: 27 Mar 2023

REFERENCES

  • Amberg, R., T. Mizutani, X.-Q. Wu, and H. J. Gross. 1996. Selenocysteine synthesis in mammalia: an identity switch from tRNA(Ser) to tRNA(Sec). J. Mol. Biol. 263: 8–19.
  • Amberg, R., C. Urban, B. Reuner, P. Scharff, S. C. Pomerantz, J. A. McClockey, and H. J. Gross. 1993. Editing does not exist for mammalian selenocysteine tRNAs. Nucleic Acids Res. 21: 5583–5585.
  • Baum, M. K., A. Campa, M. J. Miguez-Burbano, X. Burbano, and G. Shor-Posner. 2001. Role of selenium in HIV/AIDS, p. 247–255. In D. L. Hatfield (ed.), Selenium: its molecular biology and role in human health. Kluwer Academic Publishers, Norwell, Mass.
  • Beck, M. A. 2001. Selenium as an antiviral agent, p. 235–245. In D. L. Hatfield (ed.), Selenium: its molecular biology and role in human health. Kluwer Academic Publishers, Norwell, Mass.
  • Behne, D., H. Hilmet, S. Scheid, H. Gessner, and W. Elger. 1988. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim. Biophys. Acta 996: 12–21.
  • Berry, M. J., J. W. Harney, T. Ohama, and D. L. Hatfield. 1994. Selenocysteine insertion or termination factors affecting UGA codon fate and complementary anticodon:codon mutations. Nucleic Acids Res. 22: 3753–3759.
  • Böck, A. 2001. Selenium metabolism in bacteria, p. 7–22. In D. L. Hatfield (ed.), Selenium: its molecular biology and role in human health. Kluwer Academic Publishers, Norwell, Mass.
  • Böck, A., K. Forchhammer, J. Heider, and C. Baron. 1991. Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem. Sci. 16: 463–467.
  • Bosl, M. R., K. Takadu, M. Oshima, S. Nishimura, and M. M. Taketo. 1997. Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc. Natl. Acad. Sci. USA 94: 5531–5534.
  • Carlson, B. A., F. J. Martin-Romero, E. Kumaraswamy, M. E. Moustafa, H. Zhi, D. L. Hatfield, and B. J. Lee. 2001. Mammalian selenocysteine tRNA, p. 23–32. In D. L. Hatfield (ed.), Selenium: its molecular biology and role in human health. Kluwer Academic Publishers, Norwell, Mass.
  • Castellano, S., N. Morozova, M. Morey, M. J. Berry, F. Serras, M. Corominas, and R. Guigo. 2001. In silico identification of novel selenoproteins in the Drosophila melanogaster genome. EMBO Rep. 2: 697–702.
  • Cataldo, L., K. Baig, R. Oko, M. A. Mastrangelo, and K. C. Kleene. 1996. Developmental expression, intracellular localization, and selenium content of the cysteine-rich protein associated with the mitochondrial capsules of mouse sperm. Mol. Reprod. Dev. 45: 320–331.
  • Chambers, I., J. Frampton, P. Goldfarb, N. Affara, W. McBain, and P. R. Harrison. 1986. The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the ′termination' codon, TGA. EMBO J. 5: 1221–1227.
  • Chittum, H. S., H. J. Baek, A. M. Diamond, P. Fernandez-Salguero, F. Gonzalez, T. Ohama, D. L. Hatfield, M. Kuehn, and B. J. Lee. 1997. Selenocysteine tRNA levels and selenium-dependent glutathione peroxidase activity in mouse embryonic stem cells heterozygous for a targeted mutation in the Sec tRNA[Ser]Sec gene. Biochemistry 36: 8634–8639.
  • Chittum, H. S., K. E. Hill, B. A. Carlson, B. J. Lee, R. F. Burk, and D. L. Hatfield. 1997. Replenishment of selenium deficient rats with selenium results in redistribution of the selenocysteine tRNA population in a tissue specific manner. Biochim. Biophys. Acta 1359: 25–34.
  • Chittum, H. S., W. S. Lane, B. A. Carlson, P. P. Roller, F. T. Lung, B. J. Lee, and D. L. Hatfield. 1998. Rabbit β-globin is extended beyond its UGA stop codon by multiple suppressions and translation reading gaps. Biochemistry 37: 10866–10870.
  • Choi, I. S., A. M. Diamond, P. F. Crain, J. D. Kolker, J. A. McCloskey, and D. L. Hatfield. 1994. Reconstitution of the biosynthetic pathway of selenocysteine tRNAs in Xenopus oocytes. Biochemistry 33: 601–605.
  • Christensen, M. J., and K. W. Burgener. 1992. Dietary selenium stabilized glutathione peroxidase mRNA in rat liver. J. Nutr. 122: 1620–1626.
  • Combs, G. F., and L. Lu. 2001. Selenium as a cancer preventive agent, p. 205–217. In D. L. Hatfield (ed.), Selenium: its molecular biology and role in human health. Kluwer Academic Publishers, Norwell, Mass.
  • Copeland, P.R., and D. M. Driscoll. 1999. Purification, redox sensitivity, and RNA binding properties of SECIS-binding protein 2, a protein involved in selenoprotein biosynthesis. J. Biol. Chem. 274: 25447–25454.
  • Copeland, P. R., V. A. Stepanik, and D. M. Driscoll. 2001. Insight into mammalian selenocysteine insertion: domain structure and ribosome binding properties of Sec insertion sequence binding protein 2. Mol. Cell Biol. 21: 1491–1498.
  • Copeland, P. R., J. E. Fletcher, B. A. Carlson, D. L. Hatfield, and D. M. Driscoll. 2000. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 19:306–314.
  • Coppinger, R. J., and A. M. Diamond. 2001. Selenium deficiency and human disease, p. 219–233. In D. L. Hatfield (ed.), Selenium: its molecular biology and role in human health. Kluwer Academic Publishers, Norwell, Mass.
  • Diamond, A. M., B. Dudock, and D. L. Hatfield. 1981. Structure and properties of a bovine liver UGA suppressor serine tRNA with a tryptophan anticodon. Cell 25: 497–506.
  • Diamond, A. M., Y. Montero-Puerner, B. J. Lee, and D. Hatfield. 1990. Selenocysteine inserting tRNAs are likely generated by tRNA editing. Nucleic Acids Res. 18: 6727.
  • Diamond, A. M., I. S. Choi, P. F. Crain, T. Hashizume, S. C. Pomerantz, R. Cruz, C. Steer, K. E. Hill, R. F. Burk, J. A. McCloskey, and D. L. Hatfield. 1993. Dietary selenium affects methylation of the wobble nucleoside in the anticodon of selenocysteine tRNA[Ser]Sec. J. Biol. Chem. 268: 14215–14223.
  • Fagegaltier, D., N. Hubert, K. Yamada, T. Mizutani, P. Carbon, and A. Krol. 2000. Characterization of mSelB, a novel mammalian elongation factor for selenoprotein translation. EMBO J. 19: 4796–4805.
  • Fletcher, J. E., P. R. Copeland, and D. M. Driscoll. 2000. Polysome distribution of phospholipid hydroperoxide glutathione peroxidase mRNA: evidence for a block in elongation at the UGA/selenocysteine codon. RNA 6: 1573–1584.
  • Fletcher, J. E., P. R. Copeland, D. M. Driscoll, and A. Krol. 2001. The selenocysteine incorporation machinery: interactions between the SECIS RNA and the SECIS-binding protein SBP2. RNA 7: 1442–1453.
  • Flohé, L., R. Brigelius-Flohé, M. Maiorino, A. Roveri, J. Wissing, and F. Ursini. 2001. Selenium and male reproduction, p. 273–281. In D. L. Hatfield (ed.), Selenium: its molecular biology and role in human health. Kluwer Academic Publishers, Norwell, Mass.
  • Gladyshev, V. N. 2001. Selenium in biology and human health: controversies and perspectives, p. 313–317. In D. L. Hatfield (ed.), Selenium: its molecular biology and role in human health. Kluwer Academic Publishers, Norwell, Mass.
  • Gladyshev, V. N., S. V. Khangulov, and T. C. Stadtman. 1994. Nicotinic acid hydroxylase from Clostridium barkeri: electron paramagnetic resonance studies show that selenium is coordinated with molybdenum in the catalytically active selenium-dependent enzyme. Proc. Natl. Acad. Sci. USA 91: 232–236.
  • Gladyshev, V. N., and G. V. Kryukov. 2001. Evolution of selenocysteine-containing proteins: significance of identification and functional characterization of selenoproteins. Biofactors 14: 87–92.
  • Glass, R. S., W. P. Singh, W. Jung, Z. Veres, T. D. Scholz, and T. C. Stadtman. 1993. Monoselenophosphate: synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX. Biochemistry 32: 12555–12559.
  • Grundner-Culemann. E., G. W. Martin III, W. Harney, and M. J. Berry. 1999. Two distinct SECIS structures capable of directing selenocysteine incorporation in eukaryotes. RNA 5: 625–635.
  • Grundner-Culemann, E., G. W. Martin, III, R. Tujebajeva, J. W. Harney, and M. J. Berry. 2001. Interplay between termination and translation machinery in eukaryotic selenoprotein synthesis. J. Mol. Biol. 310: 699–707.
  • Guimaraes, M. J., D. Peterson, A. Vicari, B. G. Cocks, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, D. A. Ferrick, R. A. Kastelein, J. R. Bazan, and A. Zlotnik. 1996. Identification of a novel selD homolog from eukaryotes, bacteria, and archaea: is there an autoregulatory mechanism in selenocysteine metabolism? Proc. Natl. Acad. Sci. USA 93: 15086–15091.
  • Hatfield, D. L., and F. H. Portugal. 1970. Seryl-tRNA in mammalian tissues. Chromatographic differences in brain and liver and a specific response to the codon, UGA. Proc. Natl. Acad. Sci. USA 67: 1200–1206.
  • Hatfield, D. L., A. Diamond, and B. Dudock. 1982. Opal suppressor serine tRNAs from bovine liver form phosphoseryl-tRNA. Proc. Natl. Acad. Sci. USA 79: 6215–6219.
  • Hatfield, D. L., B. J. Lee, L. Hampton, and A. M. Diamond. 1991. Selenium induces changes in the selenocysteine tRNA[Ser]Sec population in mammal cells. Nucleic Acids Res. 19: 939–943.
  • Hatfield, D. L., I. S. Choi, T. Ohama, J.-E. Jung, and A. M. Diamond. 1994. Selenocysteine tRNA(Ser)sec isoacceptors as central components in selenoprotein biosynthesis in eukaryotes, p. 25–44. In R. F. Burk (ed.), Selenium in biology and human health. Springer-Verlag, New York, N.Y.
  • Hatfield, D. L., V. N. Gladyshev, J. M. Park, S. I. Park, H. S. Chittum, J. R. Huh, B. A. Carlson, M. Kim, M. E. Moustafa, and B. J. Lee. 1999. Biosynthesis of selenocysteine and its incorporation into protein as the 21st amino acid, p. 353–380. In J. W. Kelly (ed.), Comprehensive natural products chemistry, vol. 4. Elsevier Science, Ltd., Oxford, England.
  • Heider, J., C. Baron, and A. Böck. 1992. Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J. 11: 3759–3766.
  • Hill, K. E., P. R. Lyons, and R. F. Burk. 1992. Differential regulation of rat liver selenoprotein mRNAs in selenium deficiency. Biochem. Biophys. Res. Commun. 185: 260–263.
  • Hill, K. E., H. S. Chittum, P. R. Lyons, M. E. Boeglin, and R. F. Burk. 1996. Effect of selenium on selenoprotein P expression in cultured liver cells. Biochim. Biophys. Acta 1313: 29–34.
  • Hubert, N., C. Sturchler, E. Westhof, P. Carbon, and A. Krol. 1998. The 9/4 secondary structure of eukaryotic selenocysteine tRNA: more pieces of evidence. RNA 4: 1029–1033.
  • Ioudovitch, A., and S. V. Steinberg. 1998. Modeling the tertiary interactions in the eukaryotic selenocysteine tRNA. RNA 4: 365–373.
  • Khorana, G. H., H. Buchi, H. Ghosh, N. Gupta, T. M. Jacob, H. Kossel, R. Morgan, S. A. Narang, E. Ohtusda, and R. D. Wells. 1966. Polynucleotide synthesis and the genetic code. Cold Spring Harbor Symp. Quant. Biol. 31: 39–49.
  • Kim, I. Y., and T. C. Stadtman. 1995. Selenophosphate synthetase: detection in extracts of rat tissues by immunoblot assay and partial purification of the enzyme from the archaean Methanococcus vannielii. Proc. Natl. Acad. Sci. USA 92: 7710–7713.
  • Kim, L. K., T. Matsufuji, S. Matsufuji, B. A. Carlson, S. S. Kim, D. L. Hatfield, and B. J. Lee. 2000. Methylation of the ribosyl moiety at position 34 of selenocysteine tRNA[Ser]Sec is governed by both primary and tertiary structure. RNA 6: 1306–1315.
  • Kohrle, J. 2000. The deiodinase family: selenoenzymes regulating thyroid hormone availability and action. Cell. Mol. Life Sci. 57: 1853–1863.
  • Korotkov, K. V., S. V. Novoselov, D. L. Hatfield, and V. N. Gladyshev. 2002. Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Mol. Cell. Biol. 22: 1402–1411.
  • Kryukov, G. V., V. M. Kryukov, and V. N. Gladyshev. 1999. New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements. J. Biol. Chem. 274: 33888–33897.
  • Kryukov, G. V., R. A. Kumar, A. Koc, Z. Sun, and V. N. Gladyshev. 2002. Selenoprotein R is a zinc-containing stereospecific methionine sulfoxide reductase. Proc. Natl. Acad. Sci. USA 99: 4245–4250.
  • Lee, B. J., P. J. Worland, J. N. Davis, T. C. Stadtman, and D. L. Hatfield. 1989. Identification of a selenocysteyl-tRNASer in mammalian cells which recognizes the nonsense codon, UGA. J. Biol. Chem. 264: 9724–9727.
  • Lee, B. J., P. de la Pena, J. A. Tobian, M. Zasloff, and D. L. Hatfield. 1987. Unique pathway of expression of an opal suppressor phosphoserine tRNA. Proc. Natl. Acad. Sci. USA 84: 6384–6388.
  • Lee, S. R., S. Bar-Noy, J. Kwon, R. L. Levine, T. C. Stadtman, and S. G. Rhee. 2000. Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc. Natl. Acad. Sci. USA 97: 2521–2526.
  • Lei, X. G., J. K. Evenson, K. M. Thompson, and R. A. Sunde. 1995. Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J. Nutr. 125: 1438–1446.
  • Leinfelder, W., T. C. Stadtman, and A. Böck. 1989. Occurrence in vivo of selenocysteyl-tRNA(SERUGA) in Escherichia coli. Effect of sel mutations. J. Biol. Chem. 264: 9720–9723.
  • Lescure, A., D. Gautheret, P. Carbon, and A. Krol. 1999. Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J. Biol. Chem. 274: 38147–38154.
  • Lovett, P. S., N. P. Ambulos, Jr., W. Mulbry, N. Noguchi, and E. J. Rogers. 1991. UGA can be decoded as tryptophan at low efficiency in Bacillus subtilis. J. Bacteriol. 173: 1810–1812.
  • Low, S. C., and M. J. Berry. 1996. Knowing when not to stop: selenocysteine incorporation in eukaryotes. Trends Biochem. Sci. 21: 203–208.
  • Low, S. C., J. W. Harney, and M. J. Berry. 1995. Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J. Biol. Chem. 270: 21659–21664.
  • Low, S. C., E. Grundner-Culemann, J. W. Harney, and M. J. Berry. 2000. SECIS-SBP2 interactions dictate selenocysteine incorporation efficiency and selenoprotein hierarchy. EMBO J. 19: 6882–6890.
  • Ma, S., K. E. Hill, R. M. Caprioli, and R. F. Burk. Mass spectrometric characterization of full-length rat selenoprotein P and 3 isoforms shortened at the C terminus. Evidence that 3 UGA codons in the mRNA open reading frame have alternative functions of specifying selenocysteine insertion or translation termination. J. Biol. Chem., in press.
  • Martin, G. W., and M. J. Berry. 2001. Selenocysteine codons decrease polysome association on endogenous selenoprotein mRNAs. Genes Cells 6: 121–129.
  • Martin-Romero, F. J., G. V. Kryukov, A. V. Lobanov, B. A. Carlson, B. J. Lee, V. N. Gladyshev, and D. L. Hatfield. 2001. Selenium metabolism in Drosophila: selenoproteins, selenoprotein mRNA expression, fertility, and mortality. J. Biol. Chem. 276: 29798–29804.
  • Matsui, M., M. Oshima, H. Oshima, K. Takaku, T. Maruyama, J. Yodoi, and M. M. Taketo. 1996. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev. Biol. 178: 179–185.
  • McCaughan, K. K., C. M. Brown, M. E. Dalphin, M. J. Berry, and W. P. Tate. 1995. Translational termination efficiency in mammals is influenced by the base following the stop codon. Proc. Natl. Acad. Sci. USA 92: 5431–5435.
  • McKenzie, R. C., T. S. Rafferty, G. J. Beckett, and J. R. Arthur. 2001. Effects of selenium on immunity and aging, p. 257–272. In D. L. Hatfield (ed.), Selenium: its molecular biology and role in human health. Kluwer Academic Publishers, Norwell, Mass.
  • Meyer, F., H. J. Schmidt, E. Plumper, A. Hasilik, G. Mersmann, H. E. Meyer, A. Engstrom, and K. Heckmann. 1991. UGA is translated as cysteine in pheromone 3 of Euplotes octocarinatus. Proc. Natl. Sci. USA 88: 3758–3761.
  • Mitchell, J. H., F. Nicol, G. J. Beckett, and J. R. Arthur. 1997. Selenium and iodine deficiencies: effects on brain and brown adipose tissue selenoenzyme activity and expression. J. Endocrinol. 155: 255–263.
  • Moriarty, P. M., C. C. Reddy, and L. E. Maquat. 1998. Selenium deficiency reduces the abundance of mRNA for Se-dependent glutathione peroxidase 1 by a UGA-dependent mechanism likely to be nonsense codon-mediated decay of cytoplasmic mRNA. Mol. Cell. Biol. 18: 2932–2939.
  • Moskovitz, J., S. Bar-Noy, W. M. Williams, J. Requena, B. S. Berlett, and E. R. Stadtman. 2001. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. USA 98: 12920–12925.
  • Moustafa, M. E., M. A. El-Saadani, K. M. Kandeel, D. B. Mansur, B. J. Lee, D. L. Hatfield, and A. M. Diamond. 1998. Overproduction of selenocysteine tRNA in Chinese hamster ovary cells following transfection of the mouse tRNA[Ser]Sec gene. RNA 4: 1436–1443.
  • Moustafa, M. E., B. A. Carlson, M. A. El-Saadani, G. V. Kryukov, Q.-I. Sun, J. W. Harney, K. E. Hill, G. F. Combs, L. Feigenbaum, D. B. Mansur, R. F. Burk, M. J. Berry, A. M. Diamond, B. J. Lee, V. N. Gladyshev, and D. L. Hatfield. 2001. Selective inhibition of selenocysteine tRNA maturation and selenoprotein synthesis in transgenic mice expressing isopentenyladenosine-deficient selenocysteine tRNA. Mol. Cell. Biol. 21: 3840–3852.
  • Mullenbach, G. T., A. Tabrizi, B. D. Irvine, G. I. Bell, and R. A. Halewell. 1988. Selenocysteine's mechanism of incorporation and evolution revealed in cDNAs of three glutathione peroxidases. Protein Eng. 2: 239–246.
  • Nasim, M. T., S. Jaenecke, A. Belduz, H. Kollmus, L. Flohe, and J. E. G. McCarthy. 2000. Eukaryotic selenocysteine incorporation follows a nonprocessive mechanism that competes with translational termination. J. Biol. Chem. 275: 14846–14852.
  • Nirenberg, M., T. Caskey, R. Marshall, R. Brimacombe, D. Kellog, B. Doctor, D. Hatfield, J. Levin, F. Rothman, S. Pestka, M. Wilcox, and F. Anderson. 1966. The RNA code in protein synthesis. Cold Spring Harbor Symp. Quant. Biol. 31: 11–24.
  • Ohama, T., D. Yang, and D. L. Hatfield. 1994. Selenocysteine tRNA and serine tRNA are aminoacylated by the same synthetase, but may manifest different identities with respect to the long extra arm. Arch. Biochem. Biophys. 315: 293–301.
  • Osawa, S., T. H. Jukes, K. Watanabe, and A. Muto. 1992. Recent evidence for evolution of the genetic code. Microbiol. Rev. 56: 229–264.
  • Rother, M., A. Resch, W. L. Gardner, W. B. Whitman, and A. Bock. 2001. Heterologous expression of archaeal selenoprotein genes directed by the SECIS element located in the 3′ non-translated region. Mol. Microbiol. 40: 900–908.
  • Saedi, M. S., C. G. Smith, J. Frampton, I. Chambers, P. R. Harrison, and R. A. Sunde. 1988. Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver. Biochem. Biophys. Res. Commun. 153: 855–861.
  • Stadtman, T. C. 1996. Selenocysteine. Annu. Rev. Biochem. 65: 83–100.
  • Sugenaga, Y., K. Ishida, T. Takeda, and K. Takagi. 1987. cDNA sequence coding for human glutathione peroxidase. Nucleic Acids Res. 15: 7178.
  • Sun, Q. A., Y. Wu, F. Zappacosta, K. T. Jeang, B. J. Lee, D. L. Hatfield, and V. N. Gladyshev. 1999. Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J. Biol. Chem. 274: 24522–24530.
  • Sun, Q. A., L. Kirnarsky, S. Sherman, and V. N. Gladyshev. 2001. Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proc. Natl. Acad. Sci. USA 98: 3673–3678.
  • Sun, X., P. M. Moriarty, and L. E. Maquat. 2000. Nonsense-mediated decay of glutathione peroxidase 1 mRNA in the cytoplasm depends on intron position. EMBO J. 19: 4734–4744.
  • Sun, X., X. Li, P. M. Moriarty, T. Henics, J. P. LaDuca, and L. E. Maquat. 2001. Nonsense-mediated decay of mRNA for the selenoprotein phospholipid hydroperoxide glutathione peroxidase is detectable in cultured cells but masked or inhibited in rat tissues. Mol. Biol. Cell 12: 1009–1017.
  • Sunde, R. A., and J. K. Evenson. 1987. Serine incorporation into the selenocysteine moiety of glutathione peroxidase. J. Biol. Chem. 262: 933–937.
  • Thompson, H. J. 2001. Role of low molecular weight, selenium-containing compounds in human health, p. 283–297. In D. L. Hatfield (ed.), Selenium: its molecular biology and role in human health. Kluwer Academic Publishers, Norwell, Mass.
  • Tujebajeva, R. M., P. R. Copeland, X. M. Xu, B. A. Carlson, J. W. Harney, D. M. Driscoll, D. L. Hatfield, and M. J. Berry. 2000. Decoding apparatus for eukaryotic selenocysteine insertion. EMBO Rep. 1: 158–163.
  • Tumbula, D. L., H. D. Becker, W.-Z. Chang, and D. Söll. 2000. Domain-specific recruitment of amide amino acids for protein synthesis. Nature 407: 106–110.
  • Walczak, R., E. Westhof, P. Carbon, and A. Krol. 1996. A novel RNA structural motif in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA 2: 367–379.
  • Watanabe, K., and S. Osawa. 1995. tRNA sequences and variations in the genetic code, p. 225–250. In D. S[tilde]oll and U. L. RajBhandary (ed.), tRNA: structure, biosynthesis, and function. American Society for Microbiology, Washington, D.C.
  • Weiner, A. M., and K. Weber. 1973. A single UGA codon functions as a natural termination signal in the coliphage beta coat protein cistron. J. Mol. Biol. 80: 837–855.
  • Weiss, S. L., and R. A. Sunde. 1998. cis-Acting elements are required for selenium regulation of glutathione peroxidase-1 mRNA levels. RNA 4: 816–827.
  • Weissbach, H., F. Etienne, T. Hoshi, S. H. Heinemann, W. T. Lowther, B. Matthews, G. St. John, C. Nathan, and N. Brot. 2002. Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch. Biochem. Biophys. 397: 172–178.
  • Wu, X. G., and H. J. Gross. 1993. The long extra arms of human tRNA[Ser]Sec and tRNA(Ser) function as major identity elements for serylation in an orientation-dependent, but not sequence-specific manner. Nucleic Acids Res. 21: 5589–5594.
  • Xu, X. M., X. Zhou, B. A. Carlson, L. K. Kim, T.-L. Huh, B. J. Lee, and D. L. Hatfield. 1999. The zebrafish genome contains two distinct selenocysteine tRNA[Ser]Sec genes. FEBS Lett. 495: 16–20.
  • Xu, X. M., B. A. Carlson, L. K. Kim, B. J. Lee, D. L. Hatfield, and A. M. Diamond. 1999. Analysis of selenocysteine (Sec) tRNA[Ser]Sec gene in Chinese hamsters. Gene 239: 49–53.
  • Zhong, L., E. S. Arner, and A. Holmgren. 2000. Structure and mechanism of mammalian thioredoxin reductase: the active site is a redox-active selenolthiol/selenenylsulfide formed from the conserved cysteine-selenocysteine sequence. Proc. Natl. Acad. Sci. USA 97: 5854–5859.
  • Zinoni, R., A. Birkmann, T. C. Stadtman, and A. Böck. 1986. Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Natl. Acad. Sci. USA 83: 4650–4654.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.