36
Views
131
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Conserved CTCF Insulator Elements Flank the Mouse and Human β-Globin Loci

, &
Pages 3820-3831 | Received 15 Nov 2001, Accepted 13 Feb 2002, Published online: 27 Mar 2023

REFERENCES

  • Ashe, H. L., J. Monks, M. Wijgerde, P. Fraser, and N. J. Proudfoot. 1998. Intergenic transcription and transinduction of the human β-globin locus. Genes Dev. 11: 2494–2509.
  • Bell, A. C., A. G. West, and G. Felsenfeld. 1999. The protein CTCF is required for the enhancer-blocking activity of vertebrate insulators. Cell 98: 387–396.
  • Bell, A. C., A. G. West, and G. Felsenfeld. 2001. Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291: 447–450.
  • Bender, M. A., A. Reik, J. Close, A. Telling, E. Epner, S. Fiering, R. Hardison, and M. Groudine. 1998. Description and targeted deletion of 5′ hypersensitive site 5 and 6 of the mouse β-globin locus control region. Blood 92: 4394–4403.
  • Bender, M. A., M. Bulger, J. Close, and M. Groudine. 2000. β-Globin gene switching and DNase I sensitivity of the endogenous β-globin locus in mice do not require the locus control region. Mol. Cell 5: 387–393.
  • Bulger, M., J. H. von Doorninck, N. Saitoh, A. Telling, C. Farrell, M. A. Bender, G. Felsenfeld, R. Axel, and M. Groudine. 1999. Conservation of sequence and structure flanking the mouse and human β-globin loci: the β-globin genes are embedded within an array of odorant receptor genes. Proc. Natl. Acad. Sci. USA 96: 5129–5134.
  • Bulger, M., M. A. Bender, J. H. van Doorninck, B. Wertman, C. M. Farrell, G. Felsenfeld, M. Groudine, and R. C. Hardison. 2000. Comparative structural and functional analysis of the olfactory receptor genes flanking the human and mouse β-globin gene clusters. Proc. Natl. Acad. Sci. USA 97: 14560–14565.
  • Burcin, M., R. Arnold, M. Lutz, B. Kaiser, D. Runge, F. Lottspeich, G. N. Filippova, V. V. Lobanenkov, and R. Renkawitz. 1997. Negative protein 1, which is required for function of the chicken lysozyme gene silencer in conjunction with hormone receptors, is identical to the multivalent zinc finger repressor CTCF. Mol. Cell. Biol. 17: 1281–1288.
  • Chung, J. H., M. Whitely, and G. Felsenfeld. 1993. A 5′ element of the chicken β-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74: 505–514.
  • Chung, J. H., A. C. Bell, and G. Felsenfeld. 1997. Characterization of the chicken β-globin insulator. Proc. Natl. Acad. Sci. USA 94: 575–580.
  • Dhar, V., A. Nandi, C. L. Schildkraut, and A. I. Skoultchi. 1990. Erythroid-specific nuclease-hypersensitive sites flanking the human β-globin domain. Mol. Cell. Biol. 10: 4324–4333.
  • Engel, J. D., and K. Tanimoto. 2000. Looping, linking, and chromatin activity: new insights into β-globin locus regulation. Cell 100: 499–502.
  • Epner, E., A. Reik, D. Cimbora, A. Telling, M. A. Bender, S. Fiering, T. Enver, D. I. K. Martin, M. Kennedy, G. Keller, and M. Groudine. 1998. The β-globin LCR is not necessary for an open chromatin structure or developmentally regulated transcription of the native mouse β-globin locus. Mol. Cell 2: 447–455.
  • Farrell, C. M., A. Grinberg, S. P. Huang, D. Chen, J. G. Pichel, H. Westphal, and G. Felsenfeld. 2000. A large upstream region is not necessary for gene expression or hypersensitive site formation at the mouse β-globin locus. Proc. Natl. Acad. Sci. USA 97: 14554–14559.
  • Filippova, G. N., S. Fagerlie, E. M. Klenova, C. Myers, Y. Dehner, G. Goodwin, P. E. Neiman, S. J. Collins, and V. V. Lobanenkov. 1996. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol. Cell. Biol. 16: 2802–2813.
  • Fleenor, D. E., and R. E. Kaufman. 1993. Characterization of the DNase I hypersensitive site 3′ of the human β globin gene domain. Blood 81: 2781–2790.
  • Forget, B. G. 1998. Molecular basis of hereditary persistence of fetal hemoglobin. Ann. N. Y. Acad. Sci. 850: 38–44.
  • Forsberg, C. M., and E. H. Bresnick. 2001. Histone acetylation beyond promoters: long-range acetylation patterns in the chromatin world. Bioessays 23: 820–830.
  • Gerasimova, T. I., K. Byrd, and V. G. Corces. 2000. A chromatin insulator determines the nuclear localization of DNA. Mol. Cell 6: 1025–1035.
  • Gribnau, J., K. Diderich, S. Pruzina, R. Calzolari, and P. Fraser. 2000. Intergenic transcription and developmental remodeling of chromatin subdomains in the human β-globin locus. Mol. Cell 5: 377–386.
  • Hardison, R., J. L. Slightom, D. L. Gumucio, M. Goodman, N. Stojanovic, and W. Miller. 1997. Locus control regions of mammalian β-globin gene clusters: combining phylogenetic analyses and experimental results to gain functional insights. Gene 205: 73–94.
  • Hebbes, T. R., A. L. Clayton, A. W. Thorne, and C. Crane-Robinson. 1994. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J. 13: 1823–1830.
  • Higgs, D. R. 1998. Do LCRs open chromatin domains? Cell 95: 299–302.
  • Jackson, J. D., H. Petrykowska, S. Philipsen, W. Miller, and R. Hardison. 1996. Role of DNA sequences outside the cores of DNase hypersensitive sites (HSs) in functions of the β-globin locus control region: domain opening and synergism between HS2 and HS3. J. Biol. Chem. 271: 11871–11878.
  • Jarman, A. P., and D. R. Higgs. 1988. Nuclear scaffold attachment sites in the human globin gene complexes. EMBO J. 7: 3337–3344.
  • Li, Q., and G. Stamatoyannopoulos. 1994. Hypersensitive site 5 of the human β locus control region functions as a chromatin insulator. Blood 84: 1399–1401.
  • Li, Q., M. Zhang, Z. Duan, and G. Stamatoyannopoulos. 1999. Structural analysis and mapping of DNase I hypersensitivity of HS5 of the β-globin locus control region. Genomics 61: 183–193.
  • Litt, M. D., M. Simpson, F. Recillas-Targa, M.-N. Prioleau, and G. Felsenfeld. 2001. Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J. 20: 2224–2235.
  • Long, Q., C. Bengra, C. Li, F. Kutlar, and D. Tuan. 1998. A long terminal repeat of the human endogenous retrovirus ERV-9 is located in the 5′ boundary area of the human β-globin locus control region. Genomics 54: 542–555.
  • Ohlsson, R., R. Renkawitz, and V. Lobanenkov. 2001. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Gen. 17: 520–527.
  • Plant, K. E., S. J. E. Routledge, and N. J. Proudfoot. 2001. Intergenic transcription in the human β-globin gene cluster. Mol. Cell. Biol. 21: 6507–6514.
  • Prioleau, M.-N., P. Nony, M. Simpson, and G. Felsenfeld. 1999. An insulator element and condensed chromatin region separate the chicken β-globin locus from an independently regulated erythroid-specific folate receptor gene. EMBO J. 18: 4035–4048.
  • Ramchandran, R., C. Bengra, B. Whitney, K. Lanclos, and D. Tuan. 2000. A (GATA)7 motif located in the 5′ boundary area of the human β-globin locus control region exhibits silencer activity in erythroid cells. Am. J. Hematol. 65: 14–24.
  • Reik, A., A. Telling, G. Zitnik, D. Cimbora, E. Epner, and M. Groudine. 1998. The locus control region is necessary for gene expression in the human β-globin locus but not the maintenance of an open chromatin structure in erythroid cells. Mol. Cell. Biol. 18: 5992–6000.
  • Reitman, M., and G. Felsenfeld. 1990. Developmental regulation of topoisomerase II sites and DNase I-hypersensitive sites in the chicken β-globin locus. Mol. Cell. Biol. 10: 2774–2786.
  • Saitoh, N., A. C. Bell, F. Recillas-Targa, A. G. West, M. Simpson, M. Pikaart, and G. Felsenfeld. 1999. Structural and functional conservation at the boundaries of the chicken β-globin domain. EMBO J. 19: 2315–2322.
  • Schübeler, D., C. Francastel, D. M. Cimbora, A. Reik, D. I. K. Martin, and M. Groudine. 2000. Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes Dev. 14: 940–950.
  • Staines, D. M., and J. O. Thomas. 1999. A sequence with homology to human HPFH-linked enhancer elements and to a family of G-protein linked membrane receptor genes is located downstream of the chicken β-globin locus. Gene 234: 345–352.
  • Stamatoyannopoulos, G., and F. Grosveld. 2001. Hemoglobin switching, p. 135–182. In G. Stamatoyannopoulos, P. W. Majerus, R. M. Perlmutter, and H. Varmus (ed.), The molecular basis of blood diseases, 3rd ed. W. B. Saunders Company, Philadelphia, Pa.
  • Tanimoto, K., Q. Liu, J. Bungert, and J. D. Engel. 1999. Effects of altered gene order or orientation of the locus control region on human β-globin gene expression in mice. Nature 398: 344–348.
  • Tuan, D., W. Solomon, Q. Li, and I. M. London. 1985. The “beta-like-globin” gene domain in human erythroid cells. Proc. Natl. Acad. Sci. USA 82: 6384–6388.
  • Yu, J., J. H. Bock, J. L. Slightom, and B. Villeponteau. 1994. A 5′ β-globin matrix-attachment region and the polyoma enhancer together confer position-independent transcription. Gene 139: 139–145.
  • Zafarana, G., S. Raguz, S. Pruzina, F. Grosveld, and D. Meijer. 1995. The regulation of human β-globin gene expression: the analysis of hypersensitive site 5 (HS5) in the LCR, p. 39–44. In G. Stammatoyannopoulos (ed.), Molecular biology of hemoglobin switching. Intercept, Andover, Mass.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.