47
Views
230
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Association of DNA Polymerase μ (pol μ) with Ku and Ligase IV: Role for pol μ in End-Joining Double-Strand Break Repair

, , &
Pages 5194-5202 | Received 08 Oct 2001, Accepted 08 Apr 2002, Published online: 27 Mar 2023

REFERENCES

  • Aoufouchi, S., E. Flatter, A. Dahan, A. Faili, B. Bertocci, S. Storck, F. Delbos, L. Cocea, N. Gupta, J. C. Weill, and C. A. Reynaud. 2000. Two novel human and mouse DNA polymerases of the polX family. Nucleic Acids Res. 28: 3684–3693.
  • Bemark, M., J. E. Sale, H. J. Kim, C. Berek, R. A. Cosgrove, and M. S. Neuberger. 2000. Somatic hypermutation in the absence of DNA-dependent protein kinase catalytic subunit (DNA-PK(cs)) or recombination-activating gene (RAG)1 activity. J. Exp. Med. 192: 1509–1514.
  • Bogue, M. A., C. Wang, C. Zhu, and D. B. Roth. 1997. V(D)J recombination in Ku86-deficient mice: distinct effects on coding, signal, and hybrid joint formation. Immunity 7: 37–47.
  • Bross, L., Y. Fukita, F. McBlane, C. Demolliere, K. Rajewsky, and H. Jacobs. 2000. DNA double-strand breaks in immunoglobulin genes undergoing somatic hypermutation. Immunity 13: 589–597.
  • Chen, S., K. V. Inamdar, P. Pfeiffer, E. Feldmann, M. F. Hannah, Y. Yu, J. W. Lee, T. Zhou, S. P. Lees-Miller, and L. F. Povirk. 2001. Accurate in vitro end joining of a DNA double strand break with partially cohesive 3′-overhangs and 3′-phosphoglycolate termini: effect of Ku on repair fidelity. J. Biol. Chem. 276: 24323–24330.
  • Dominguez, O., J. F. Ruiz, T. Lain de Lera, M. Garcia-Diaz, M. A. Gonzalez, T. Kirchhoff, A. C. Martinez, A. Bernad, and L. Blanco. 2000. DNA polymerase μ (Pol μ), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J. 19: 1731–1742.
  • Downs, J. A., N. F. Lowndes, and S. P. Jackson. 2000. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408: 1001–1004.
  • Feldmann, E., V. Schmiemann, W. Goedecke, S. Reichenberger, and P. Pfeiffer. 2000. DNA double-strand break repair in cell-free extracts from Ku80-deficient cells: implications for Ku serving as an alignment factor in non-homologous DNA end joining. Nucleic Acids Res. 28: 2585–2596.
  • Garcia-Diaz, M., K. Bebenek, R. Sabariegos, O. Dominguez, J. Rodriguez, T. Kirchhoff, E. Garcia-Palomero, A. J. Picher, R. Juarez, J. F. Ruiz, T. A. Kunkel, and L. Blanco. 2002. DNA polymerase λ, a novel DNA repair enzyme in human cells. J. Biol. Chem. 277: 13184–13191.
  • Gellert, M. 1997. Recent advances in understanding V(D)J recombination. Adv. Immunol. 64: 39–64.
  • Gilfillan, S., C. Benoist, and D. Mathis. 1995. Mice lacking terminal deoxynucleotidyl transferase: adult mice with a fetal antigen receptor repertoire. Immunol. Rev. 148: 201–219.
  • Haaf, T., E. I. Golub, G. Reddy, C. M. Radding, and D. C. Ward. 1995. Nuclear foci of mammalian Rad51 recombination protein in somatic cells after DNA damage and its localization in synaptonemal complexes. Proc. Natl. Acad. Sci. USA 92: 2298–2302.
  • Kabotyanski, E. B., L. Gomelsky, J. O. Han, T. D. Stamato, and D. B. Roth. 1998. Double-strand break repair in Ku86- and XRCC4-deficient cells. Nucleic Acids Res. 26: 5333–5342.
  • Lai, J. S., and W. Herr. 1992. Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc. Natl. Acad. Sci. USA 89: 6958–6962.
  • Mahajan, K. N., L. Gangi-Peterson, D. H. Sorscher, J. Wang, K. N. Gathy, N. P. Mahajan, W. H. Reeves, and B. S. Mitchell. 1999. Association of terminal deoxynucleotidyl transferase with Ku. Proc. Natl. Acad. Sci. USA 96: 13926–13931.
  • Maser, R. S., K. J. Monsen, B. E. Nelms, and J. H. Petrini. 1997. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell. Biol. 17: 6087–6096.
  • Mickelsen, S., C. Snyder, K. Trujillo, M. Bogue, D. B. Roth, and K. Meek. 1999. Modulation of terminal deoxynucleotidyltransferase activity by the DNA-dependent protein kinase. J. Immunol. 163: 834–843.
  • Moshous, D., I. Callebaut, R. de Chasseval, B. Corneo, M. Cavazzana-Calvo, F. Le Deist, I. Tezcan, O. Sanal, Y. Bertrand, N. Philippe, A. Fischer, and J. P. de Villartay. 2001. Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105: 177–186.
  • Nelms, B. E., R. S. Maser, J. F. MacKay, M. G. Lagally, and J. H. Petrini. 1998. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280: 590–592.
  • Nick McElhinny, S. A., C. M. Snowden, J. McCarville, and D. A. Ramsden. 2000. Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol. Cell. Biol. 20: 2996–3003.
  • Papavasiliou, F. N., and D. G. Schatz. 2000. Cell-cycle-regulated DNA double-stranded breaks in somatic hypermutation of immunoglobulin genes. Nature 408: 216–221.
  • Paull, T. T., E. P. Rogakou, V. Yamazaki, C. U. Kirchgessner, M. Gellert, and W. M. Bonner. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10: 886–895.
  • Pfeiffer, P., S. Thode, J. Hancke, and W. Vielmetter. 1994. Mechanisms of overlap formation in nonhomologous DNA end joining. Mol. Cell. Biol. 14: 888–895.
  • Pospiech, H., A. K. Rytkonen, and J. E. Syvaoja. 2001. The role of DNA polymerase activity in human non-homologous end joining. Nucleic Acids Res. 29: 3277–3288.
  • Prasad, R., A. Kumar, S. G. Widen, J. R. Casas-Finet, and S. H. Wilson. 1993. Identification of residues in the single-stranded DNA-binding site of the 8-kDa domain of rat DNA polymerase β by UV cross-linking. J. Biol. Chem. 268: 22746–22755.
  • Purugganan, M. M., S. Shah, J. F. Kearney, and D. B. Roth. 2001. Ku80 is required for addition of N nucleotides to V(D)J recombination junctions by terminal deoxynucleotidyl transferase. Nucleic Acids Res. 29: 1638–1646.
  • Reynaud, C. A., S. Frey, S. Aoufouchi, A. Faili, B. Bertocci, A. Dahan, E. Flatter, F. Delbos, S. Storck, C. Zober, and J. C. Weill. 2001. Transcription, beta-like DNA polymerases and hypermutation. Philos. Trans. R. Soc. Lond. B 356: 91–97.
  • Rogakou, E. P., C. Boon, C. Redon, and W. M. Bonner. 1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146: 905–916.
  • Rogakou, E. P., D. R. Pilch, A. H. Orr, V. S. Ivanova, and W. M. Bonner. 1998. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273: 5858–5868.
  • Roth, D. B., and J. H. Wilson. 1986. Nonhomologous recombination in mammalian cells: role for short sequence homologies in the joining reaction. Mol. Cell. Biol. 6: 4295–4304.
  • Ruiz, J. F., O. Dominguez, T. Lain de Lera, M. Garcia-Diaz, A. Bernad, and L. Blanco. 2001. DNA polymerase μ, a candidate hypermutase? Philos. Trans. R. Soc. Lond. B 356: 99–109.
  • Shieh, S. Y., M. Ikeda, Y. Taya, and C. Prives. 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.
  • Siliciano, J. D., C. E. Canman, Y. Taya, K. Sakaguchi, E. Appella, and M. B. Kastan. 1997. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 11: 3471–3481.
  • Smith, J., C. Baldeyron, I. De Oliveira, M. Sala-Trepat, and D. Papadopoulo. 2001. The influence of DNA double-strand break structure on end-joining in human cells. Nucleic Acids Res. 29: 4783–4792.
  • Suwa, A., M. Hirakata, Y. Takeda, S. A. Jesch, T. Mimori, and J. A. Hardin. 1994. DNA-dependent protein kinase (Ku protein-p350 complex) assembles on double-stranded DNA. Proc. Natl. Acad. Sci. USA 91: 6904–6908.
  • Thode, S., A. Schafer, P. Pfeiffer, and W. Vielmetter. 1990. A novel pathway of DNA end-to-end joining. Cell 60: 921–928.
  • Wilson, T. E., and M. R. Lieber. 1999. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase β (Pol4)-dependent pathway. J. Biol. Chem. 274: 23599–23609.
  • Zhang, Y., X. Wu, F. Yuan, Z. Xie, and Z. Wang. 2001. Highly frequent frameshift DNA synthesis by human DNA polymerase μ. Mol. Cell. Biol. 21: 7995–8006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.