10
Views
34
CrossRef citations to date
0
Altmetric
Nucleocytoplasmic Communication

Unique Motif for Nucleolar Retention and Nuclear Export Regulated by Phosphorylation

, , , , &
Pages 1126-1139 | Received 26 Jul 2001, Accepted 08 Nov 2001, Published online: 28 Mar 2023

REFERENCES

  • Aitchison, J. D., and M. P. Rout. 2000. The road to ribosomes. Filling potholes in the export pathway. J. Cell Biol. 151: F23–F26.
  • Andjelkovic, M., S. M. Maira, P. Cron, P. J. Parker, and B. A. Hemmings. 1999. Domain swapping used to investigate the mechanism of protein kinase B regulation by 3-phosphoinositide-dependent protein kinase 1 and Ser473 kinase. Mol. Cell. Biol. 19: 5061–5072.
  • Besse, S., J.-J. Diaz, E. Pichard, K. Kindbeiter, J.-J. Madjar, and F. Puvion-Dutilleul. 1996. In situ hybridization and immunoelectron microscope analyses of the Us11 gene of herpes simplex virus type 1 for transient expression. Chromosoma 104: 434–444.
  • Bogerd, H. P., R. E. Benson, R. Truant, A. Herold, M. Phingbodhipakkiya, and B. R. Cullen. 1999. Definition of a consensus transportin-specific nucleocytoplasmic transport signal. J. Biol. Chem. 274: 9771–9777.
  • Boulikas, T. 1993. Nuclear localization signals (NLS). Crit. Rev. Eukaryot. Gene Expr. 3: 193–227.
  • Buonomo, S. B., A. Michienzi, F. G. De Angelis, and I. Bozzoni. 1999. The Rev protein is able to transport to the cytoplasm small nucleolar RNAs containing a Rev binding element. RNA 5: 993–1002.
  • Cassady, K. A., M. Gross, and B. Roizman. 1998. The herpes simplex virus US11 protein effectively compensates for the γ1(34.5) gene if present before activation of protein kinase R by precluding its phosphorylation and that of the alpha subunit of eukaryotic translation initiation factor 2. J. Virol. 72: 8620–8626.
  • Chelsky, D., R. Ralph, and G. Jonak. 1989. Sequence requirements for synthetic peptide-mediated translocation to the nucleus. Mol. Cell. Biol. 9: 2487–2492.
  • Creancier, L., H. Prats, C. Zanibellato, F. Amalric, and B. Bugler. 1993. Determination of the functional domains involved in nucleolar targeting of nucleolin. Mol. Biol. Cell 4: 1239–1250.
  • Cullen, B. R. 1986. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 46: 973–982.
  • Dang, C. V., and W. M. Lee. 1989. Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J. Biol. Chem. 264: 18019–18023.
  • Diaz, J.-J., M. Duc Dodon, N. Schaerer-Uthurralt, D. Simonin, K. Kindbeiter, L. Gazzolo, and J.-J. Madjar. 1996. Posttranscriptional transactivation of human retroviral envelope glycoprotein expression by herpes simplex virus Us11 protein. Nature 379: 273–277.
  • Diaz, J.-J., and D. J. Roufa. 1992. Fine-structure map of the human ribosomal protein gene RPS14. Mol. Cell. Biol. 12: 1680–1686.
  • Diaz, J.-J., D. Simonin, T. Massé, P. Deviller, K. Kindbeiter, L. Denoroy, and J.-J. Madjar. 1993. The herpes simplex virus type 1 Us11 gene product is a phosphorylated protein found to be nonspecifically associated with both ribosomal subunits. J. Gen. Virol. 74: 397–406.
  • Diaz-Latoud, C., J.-J. Diaz, N. Fabre-Jonca, K. Kindbeiter, J.-J. Madjar, and A.-P. Arrigo. 1997. Herpes simplex virus Us11 protein enhances recovery of protein synthesis and survival in heat shock treated HeLa cells. Cell Stress Chaperones 2: 119–131.
  • Duc Dodon, M., I. Mikaelian, A. Sergeant, and L. Gazzolo. 2000. The herpes simplex virus 1 Us11 protein cooperates with suboptimal amounts of human immunodeficiency virus type 1 (HIV-1) Rev protein to rescue HIV-1 production. Virology 270: 43–53.
  • Dundr, M., and T. Misteli. 2001. Functional architecture in the cell nucleus. Biochem. J. 356: 297–310.
  • Fischer, U., J. Huber, W. C. Boelens, I. W. Mattaj, and R. Lührmann. 1995. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82: 475–483.
  • Fridell, R. A., R. Truant, L. Thorne, R. E. Benson, and B. R. Cullen. 1997. Nuclear import of hnRNP A1 is mediated by a novel cellular cofactor related to karyopherin-beta. J. Cell Sci. 110: 1325–1331.
  • Gescher, A. 1998. Analogs of staurosporine: potential anticancer drugs? Gen. Pharmacol. 31: 721–728.
  • Gorlich, D., and U. Kutay. 1999. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15: 607–660.
  • Görlich, D., and I. W. Mattaj. 1996. Nucleocytoplasmic transport. Science 271: 1513–1518.
  • Greco, A., D. Simonin, J.-J. Diaz, L. Barjhoux, K. Kindbeiter, J.-J. Madjar, and T. Massé. 1994. The DNA sequence coding for the 5" untranslated region of herpes simplex type 1 ICP22 mRNA mediates high level of gene expression. J. Gen. Virol. 75: 1693–1702.
  • Horgan, D. J., and T. P. Singer. 1967. Characteristics of the binding of rotenone in the respiratory chain and the inhibition sites of amytal and piericidin A. Biochem. J. 104: 50C-52C.
  • Jeffrey, I. W., S. Kadereit, E. F. Meurs, T. Metzger, M. Bachmann, M. Schwemmle, A. G. Hovanessian, and M. J. Clemens. 1995. Nuclear localization of the interferon-inducible protein kinase PKR in human cells and transfected mouse cells. Exp. Cell Res. 218: 17–27.
  • Johnson, F. B., R. A. Marciniak, and L. Guarente. 1998. Telomeres, the nucleolus and aging. Curr. Opin. Cell Biol. 10: 332–338.
  • Kalderon, D., W. D. Richardson, A. F. Markham, and A. E. Smith. 1984. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature 311: 33–38.
  • Laemmli, U. K. 1970. Cleavage of structural proteins for the assembly of the head of bacteriophage T4. Nature 227: 680–685.
  • Lewis, J. D., and D. Tollervey. 2000. Like attracts like: getting RNA processing together in the nucleus. Science 288: 1385–1389.
  • Lipowsky, G., F. R. Bischoff, P. Schwarzmaier, R. Kraft, S. Kostka, E. Hartmann, U. Kutay, and D. Gorlich. 2000. Exportin 4: a mediator of a novel nuclear export pathway in higher eukaryotes. EMBO J. 19: 4362–4371.
  • Liu, H. T., and B. Y. Yung. 1999. In vivo interaction of nucleophosmin/B23 and protein C23 for cell cycle progression in HeLa cells. Cancer Lett. 144: 45–54.
  • Liu, J. L., L. F. Lee, Y. Ye, Z. Qian, and H. J. Kung. 1997. Nucleolar and nuclear localization properties of a herpesvirus bZIP oncoprotein, MEQ. J. Virol. 71: 3188–3196.
  • Lohrum, M. A., M. Ashcroft, M. H. Kubbutat, and K. H. Vousden. 2000. Identification of a cryptic nucleolar-localization signal in MDM2. Nat. Cell Biol. 2: 179–181.
  • Madjar, J.-J., M. Arpin, M. Buisson, and J. P. Reboud. 1979. Spot position of rat liver ribosomal proteins by four different two-dimensional electrophoreses in polyacrylamide gel. Mol. Gen. Genet. 171: 121–134.
  • Michael, W. M. 2000. Nucleocytoplasmic shuttling signals: two for the price of one. Trends Cell Biol. 10: 46–50.
  • Milkereit, P., O. Gadal, A. Podtelejnikov, S. Trumtel, N. Gas, E. Petfalski, D. Tollervey, M. Mann, E. Hurt, and H. Tschochner. 2001. Maturation and intranuclear transport of preribosomes requires noc proteins. Cell 105: 499–509.
  • Misteli, T. 2001. Protein dynamics: implications for nuclear architecture and gene expression. Science 291: 843–847.
  • Moroianu, J., and J. F. Riordan. 1994. Identification of the nucleolar targeting signal of human angiogenin. Biochem. Biophys. Res. Commun. 203: 1765–1772.
  • Nakielny, S., and G. Dreyfuss. 1999. Transport of proteins and RNAs in and out of the nucleus. Cell 99: 677–690.
  • Olson, M. O., M. Dundr, and A. Szebeni. 2000. The nucleolus: an old factory with unexpected capabilities. Trends Cell Biol. 10: 189–196.
  • Pederson, T. 1998. The plurifunctional nucleolus. Nucleic Acids Res. 26: 3871–3876.
  • Phair, R. D., and T. Misteli. 2000. High mobility of proteins in the mammalian cell nucleus. Nature 404: 604–609.
  • Puvion-Dutilleul, F. 1987. Localization of viral-specific 21kDa protein in nucleoli of herpes simplex infected cells. Eur. J. Cell Biol. 43: 487–498.
  • Pyper, J. M., J. E. Clements, and M. C. Zink. 1998. The nucleolus is the site of Borna disease virus RNA transcription and replication. J. Virol. 72: 7697–7702.
  • Roizman, B., and A. E. Sears. 1993. Herpes simplex viruses and their replication, p. 11–68. In B. Roizman, R. J. Whitley, and C. Lopez (ed.), The human herpesviruses, 3rd ed. Raven Press, New York, N.Y.
  • Roller, R. J., L. L. Monk, D. Stuart, and B. Roizman. 1996. Structure and function in the herpes simplex virus 1 RNA-binding protein U(s)11: mapping of the domain required for ribosomal and nucleolar association and RNA binding in vitro. J. Virol. 70: 2842–2851.
  • Roller, R. J., and B. Roizman. 1992. The herpes simplex virus 1 RNA binding protein Us11 is a virion component and associates with ribosomal 60S subunits. J. Virol 66: 3624–3632.
  • Rossi, J. J. 1999. Ribozymes in the nucleolus. Science 285: 1685.
  • Schaerer-Uthurralt, N., M. Erard, K. Kindbeiter, J. J. Madjar, and J. J. Diaz. 1998. Distinct domains in herpes simplex virus type 1 US11 protein mediate posttranscriptional transactivation of human T-lymphotropic virus type I envelope glycoprotein gene expression and specific binding to the Rex responsive element. J. Gen. Virol. 79: 1593–1602.
  • Scheer, U., and R. Hock. 1999. Structure and function of the nucleolus. Curr. Opin. Cell Biol. 11: 385–390.
  • Simonin, D., J.-J. Diaz, K. Kindbeiter, P. Pernas, and J.-J. Madjar. 1995. Phosphorylation of herpes simplex virus type 1 Us11 protein is independent of viral genome expression. Electrophoresis 16: 1317–1322.
  • Siomi, H., H. Shida, S. H. Nam, T. Nosaka, M. Maki, and M. Hatanaka. 1988. Sequence requirements for nucleolar localization of human T-cell leukemia virus type I pX protein, which regulates viral RNA processing. Cell 55: 197–209.
  • Songyang, Z., K. P. Lu, Y. T. Kwon, L. H. Tsai, O. Filhol, C. Cochet, D. A. Brickey, T. R. Soderling, C. Bartleson, D. J. Graves, A. J. DeMaggio, M. F. Hoekstra, J. Blenis, T. Hunter, and L. C. Cantley. 1996. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinases I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol. Cell. Biol. 16: 6486–6493.
  • Wen, W., J. L. Meinkoth, R. Y. Tsien, and S. S. Taylor. 1995. Identification of a signal for rapid export of proteins from the nucleus. Cell 82: 463–473.
  • Zhai, W., and L. Comai. 1999. A kinase activity associated with simian virus 40 large T antigen phosphorylates upstream binding factor (UBF) and promotes formation of a stable initiation complex between UBF and SL1. Mol. Cell. Biol. 19: 2791–2802.
  • Zolotukhin, A. S., and B. K. Felber. 1999. Nucleoporins nup98 and nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J. Virol. 73: 120–127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.