21
Views
55
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Role of Metalloprotease Disintegrin ADAM12 in Determination of Quiescent Reserve Cells during Myogenic Differentiation In Vitro

, , &
Pages 6725-6738 | Received 29 Jan 2003, Accepted 30 Jun 2003, Published online: 27 Mar 2023

REFERENCES

  • Arnold, H. H., and B. Winter. 1998. Muscle differentiation: more complexity to the network of myogenic regulators. Curr. Opin. Genet. Dev. 8: 539–544.
  • Asakura, M., M. Kitakaze, S. Takashima, Y. Liao, F. Ishikura, T. Yoshinaka, H. Ohmoto, K. Node, K. Yoshino, H. Ishiguro, H. Asanuma, S. Sanada, Y. Matsumura, H. Takeda, S. Beppu, M. Tada, M. Hori, and S. Higashiyama. 2002. Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat. Med. 8: 35–40.
  • Beauchamp, J. R., L. Heslop, D. S. Yu, S. Tajbakhsh, R. G. Kelly, A. Wernig, M. E. Buckingham, T. A. Partridge, and P. S. Zammit. 2000. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J. Cell Biol. 151: 1221–1234.
  • Bischoff, R. 1994. The satellite cell and muscle regeneration, p. 97–118. In A. G. Engel and C. Franzini-Armstrong (ed.), Mycology, vol. 1. McGraw-Hill, New York, N.Y.
  • Black, R. A., and J. M. White. 1998. ADAMs: focus on the protease domain. Curr. Opin. Cell Biol. 10: 654–659.
  • Bornemann, A., R. Kuschel, and A. Fujisawa-Sehara. 2000. Analysis for transcript expression of meltrin alpha in normal, regenerating, and denervated rat muscle. J. Muscle Res. Cell Motil. 21: 475–480.
  • Burkin, D. J., and S. J. Kaufman. 1999. The α7β1 integrin in muscle development and disease. Cell Tissue Res. 296: 183–190.
  • Cao, Y., Q. Kang, Z. Zhao, and A. Zolkiewska. 2002. Intracellular processing of metalloprotease disintegrin ADAM12. J. Biol. Chem. 277: 26403–26411.
  • Cao, Y., Q. Kang, and A. Zolkiewska. 2001. Metalloprotease-disintegrin ADAM12 interacts with α-actinin-1. Biochem. J. 357: 353–361.
  • Carnac, G., L. Fajas, A. l'Honore, C. Sardet, N. J. C. Lamb, and A. Fernandez. 2000. The retinoblastoma-like protein p130 is involved in the determination of reserve cells in differentiating myoblasts. Curr. Biol. 10: 543–546.
  • Chakravarthy, M. V., M. L. Fiorotto, R. J. Schwartz, and F. W. Booth. 2001. Long-term insulin-like growth factor-I expression in skeletal muscles attenuates the enhanced in vitro proliferation ability of the resident satellite cells in transgenic mice. Mech. Ageing Dev. 122: 1303–1320.
  • Cherney, R. J., L. Wang, D. T. Meyer, C. B. Xue, E. C. Arner, R. A. Copeland, M. B. Covington, K. D. Hardman, Z. R. Wasserman, B. D. Jaffee, and C. P. Decicco. 1999. Macrocyclic hydroxamate inhibitors of matrix metalloproteinases and TNF-α production. Bioorg. Med. Chem. Lett. 9: 1279–1284.
  • Chu, C. Y., and R. W. Lim. 2000. Involvement of p27(kip1) and cyclin D3 in the regulation of cdk2 activity during skeletal muscle differentiation. Biochim. Biophys. Acta 1497: 175–185.
  • Cornelison, D. D., and B. J. Wold. 1997. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol. 191: 270–283.
  • Eto, K., C. Huet, T. Tarui, S. Kupriyanov, H. Z. Liu, W. Puzon-McLaughlin, X. P. Zhang, D. Sheppard, E. Engvall, and Y. Takada. 2002. Functional classification of ADAMs based on a conserved motif for binding to integrin α9β1: implications for sperm-egg binding and other cell interactions. J. Biol. Chem. 277: 17804–17810.
  • Eto, K., W. Puzon-McLaughlin, D. Sheppard, A. Sehara-Fujisawa, X. P. Zhang, and Y. Takada. 2000. RGD-independent binding of integrin α9β1 to the ADAM-12 and -15 disintegrin domains mediates cell-cell interaction. J. Biol. Chem. 275: 34922–34930.
  • Franklin, D. S., and Y. Xiong. 1996. Induction of p18INK4c and its predominant association with CDK4 and CDK6 during myogenic differentiation. Mol. Biol. Cell 7: 1587–1599.
  • Friday, B. B., G. K. Pavlath. 2001. A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J. Cell Sci. 114: 303–310.
  • Galliano, M. F., C. Huet, J. Frygelius, A. Polgren, U. M. Wewer, and E. Engvall. 2000. Binding of ADAM12, a marker of skeletal muscle regeneration, to the muscle-specific actin-binding protein, α-actinin-2, is required for myoblast fusion. J. Biol. Chem. 275: 13933–13939.
  • Gilpin, B. J., F. Loechel, M. G. Mattei, E. Engvall, R. Albrechtsen, and U. M. Wewer. 1998. A novel, secreted form of human ADAM12 (meltrin alpha) provokes myogenesis in vivo. J. Biol. Chem. 273: 157–166.
  • Grounds, M. D. 1999. Muscle regeneration: molecular aspects and therapeutic implications. Curr. Opin. Neurol. 12: 535–543.
  • Halevy, O., B. G. Novitch, D. B. Spicer, S. X. Skapek, J. Rhee, G. J. Hannon, D. Beach, and A. B. Lassar. 1995. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267: 1018–1021.
  • Hawke, T. J., and D. J. Garry. 2001. Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 91: 534–551.
  • Hougaard, S., F. Loechel, X. Xu, R. Tajima, R. Albrechtsen, and U. M. Wewer. 2000. Trafficking of human ADAM12-L: retention in the trans-Golgi network. Biochem. Biophys. Res. Commun. 275: 261–267.
  • Huet, C., Z. F. Li, H. Z. Liu, R. A. Black, M. F. Galliano, and E. Engvall. 2001. Skeletal muscle cell hypertrophy induced by inhibitors of metalloproteases: myostatin as a potential mediator. Am. J. Physiol. Cell Physiol. 281: C1624–C1634.
  • Iba, K., R. Albrechtsen, B. Gilpin, C. Frühlich, F. Loechel, A. Zolkiewska, K. Ishihuro, T. Kojima, W. Liu, J. K. Langford, R. D. Sanderson, C. Brakebusch, R. Fässler, and U. M. Wewer. 2000. The cysteine-rich domain of human ADAM12 supports cell adhesion through syndecans and triggers signaling events that lead to β1 integrin-dependent cell spreading. J. Cell Biol. 149: 1143–1155.
  • Iba, K., R. Albrechtsen, B. J. Gilpin, F. Loechel, and U. M. Wewer. 1999. Cysteine-rich domain of human ADAM12 (meltrin α) supports tumor cell adhesion. Am. J. Pathol. 154: 1489–1501.
  • Kang, Q., Y. Cao, and A. Zolkiewska. 2000. Metalloprotease-disintegrin ADAM12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells. Biochem. J. 352: 883–892.
  • Kang, Q., Y. Cao, and A. Zolkiewska. 2001. Direct interaction between the cytoplasmic tail of ADAM12 and the SH3 domain of p85α activates phosphatidylinositol 3-kinase in C2C12 cells. J. Biol. Chem. 276: 24466–24472.
  • Kawaguchi, N., X. Xu, R. Tajima, P. Kronqvist, C. Sundberg, F. Loechel, R. Albrechtsen, and U. M. Wewer. 2002. ADAM12 protease induces adipogenesis in transgenic mice. Am. J. Pathol. 160: 1895–1903.
  • Kitzmann, M., G. Carnac, M. Vandromme, M. Primig, N. J. C. Lamb, and A. Fernandez. 1998. The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J. Cell Biol. 142: 1447–1459.
  • Kitzmann, M., and A. Fernandez. 2001. Crosstalk between cell cycle regulators and the myogenic factor MyoD in skeletal myoblasts. Cell. Mol. Life Sci. 58: 571–579.
  • Kops, G. J., R. H. Medema, J. Glassford, M. A. Essers, P. F. Dijkers, P. J. Coffer, E. W. Lam, and B. M. Burgering. 2002. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol. Cell. Biol. 22: 2025–2036.
  • Kronqvist, P., N. Kawaguchi, R. Albrechtsen, X. Xu, H. D. Schroder, B. Moghadaszadeh, F. C. Nielsen, C. Frohlich, E. Engvall, and U. M. Wewer. 2002. ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice. Am. J. Pathol. 161: 1535–1540.
  • Kurisaki, T., A. Masuda, K. Sudo, J. Sakagami, S. Higashiyama, Y. Matsuda, A. Nagabukuro, A. Tsuji, Y. Nabeshima, M. Asano, Y. Iwakura, and A. Sehara-Fujisawa. 2003. Phenotypic analysis of meltrin α (ADAM12)-deficient mice: involvement of meltrin α in adipogenesis and myogenesis. Mol. Cell. Biol. 23: 55–61.
  • Langley, B., M. Thomas, A. Bishop, M. Sharma, S. Gilmour, and R. Kambadur. 2002. Myostatin inhibits myoblast differentiation by downregulating MyoD expression. J. Biol. Chem. 277: 49831–49840.
  • Lee, S. J., and A. C. McPherron. 2001. Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. USA 98: 9306–9311.
  • Lindon, C., D. Montarras, and C. Pinset. 1998. Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts. J. Cell Biol. 140: 111–118.
  • Loechel, F., J. W. Fox, G. Murphy, R. Albrechtsen, and U. M. Wewer. 2000. ADAM12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem. Biophys. Res. Commun. 278: 511–515.
  • Loechel, F., B. J. Gilpin, E. Engvall, R. Albrechtsen, and U. M. Wewer. 1998. Hum. ADAM12 (meltrin alpha) is an active metalloprotease. J. Biol. Chem. 273: 16993–16997.
  • Mayol, X., and X. Grana. 1998. The p130 pocket protein: keeping order at cell cycle exit/re-entrance transitions. Front. Biosci. 3: D11–D24.
  • Medema, R. H., G. J. Kops, J. L. Bos, and B. M. Burgering. 2000. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404: 782–787.
  • Megeney, L. A., B. Kablar, K. Garrett, J. E. Anderson, and M. A. Rudnicki. 1996. MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev. 10: 1173–1183.
  • Miskimins, W. K., G. Wang, M. Hawkinson, and R. Miskimins. 2001. Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation. Mol. Cell. Biol. 21: 4960–4967.
  • Molkentin, J. D., and E. N. Olson. 1996. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev. 6: 445–453.
  • Montgomery, R. A., and H. C. Dietz. 1997. Inhibition of fibrillin 1 expression with U1 snRNA as a vehicle for the presentation of antisense targeting sequence. Hum. Mol. Genet. 6: 519–525.
  • Musaro, A., and N. Rosenthal. 1999. Maturation of the myogenic program is induced by postmitotic expression of insulin-like growth factor I. Mol. Cell. Biol. 19: 3115–3124.
  • Olashaw, N., and W. Pledger. 2002. Paradigms of growth control: relation to Cdk activation. Science's STKE. (Online, http://stke.sciencemag.org/cgi/content/full/OC_sigtrans;2002/134/re7 .)
  • Parker, S. B., G. Eichele, P. Zhang, A. Rawls, A. T. Sands, A. Bradley, E. N. Olson, J. W. Harper, and S. J. Elledge. 1995. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267: 1024–1027.
  • Perry, R. L. S., and M. A. Rudnicki. 2000. Molecular mechanisms regulating myogenic determination and differentiation. Front. Biosci. 5: 750–767.
  • Rudnicki, M. A., T. Braun, S. Hinuma, and R. Jaenisch. 1992. Inactivation of MyoD in mice leads to upregulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71: 383–390.
  • Sabourin, L. A., A. Girgis-Gabardo, P. Seale, A. Asakura, and M. A. Rudnicki. 1999. Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J. Cell Biol. 144: 631–643.
  • Schlündorff, J., and C. P. Blobel. 1999. Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J. Cell Sci. 112: 3603–3617.
  • Schultz, E., and K. M. McCormick. 1994. Skeletal muscle satellite cells. Rev. Physiol. Biochem. Pharmacol. 123: 213–257.
  • Seale, P., and M. A. Rudnicki. 2000. A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev. Biol. 218: 115–124.
  • Shi, Z., W. Xu, F. Loechel, U. M. Wewer, and L. J. Murphy. 2000. ADAM12, a disintegrin metalloprotease, interacts with insulin-like growth factor-binding protein-3. J. Biol. Chem. 275: 18574–18580.
  • Skapek, S. X., J. Rhee, D. B. Spicer, A. B. Lassar. 1995. Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science 267: 1022–1024.
  • Smith, E. J., G. Leone, J. DeGregori, L. Jakoi, and J. R. Nevins. 1996. The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state. Mol. Cell. Biol. 16: 6965–6976.
  • Spangenburg, E. E., M. V. Chakravarthy, and F. W. Booth. 2002. p27Kip1: a key regulator of skeletal muscle satellite cell proliferation. Clin. Orthop. 403: S221–S227.
  • Stone, A. L., M. Kroeger, and Q. X. A. Sang. 1999. Structure-function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins. J. Protein Chem. 18: 447–465.
  • Thomas, M., B. Langley, C. Berry, M. Sharma, S. Kirk, J. Bass, and R. Kambadur. 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 275: 40235–40243.
  • Walsh, K., and H. Perlman. 1997. Cell cycle exit upon myogenic differentiation. Curr. Opin. Genet. Dev. 7: 597–602.
  • Wang, J., and K. Walsh. 1996. Resistance to apoptosis conferred by Cdk inhibitors during myocyte differentiation. Science 273: 359–361.
  • Yablonka-Reuveni, Z., and A. J. Rivera. 1994. Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev. Biol. 164: 588–603.
  • Yablonka-Reuveni, Z., M. A. Rudnicki, A. J. Rivera, M. Primig, J. E. Anderson, and P. Natanson. 1999. The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev. Biol. 210: 440–455.
  • Yagami-Hiromasa, T., T. Sato, T. Kurisaki, K. Kamijo, Y. Nabeshima, and A. Fujisawa-Sehara. 1995. A metalloprotease-disintegrin participating in myoblast fusion. Nature 377: 652–656.
  • Yoshida, N., S. Yoshida, K. Koishi, K. Masuda, and Y. Nabeshima. 1998. Cell heterogeneity upon myogenic differentiation: downregulation of MyoD and Myf-5 generates "reserve cells'. J. Cell Sci. 111: 769–779.
  • Yun, K., and B. Wold. 1996. Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr. Opin. Cell Biol. 8: 877–889.
  • Zabludoff, S. D., M. Csete, R. Wagner, X. Yu, and B. J. Wold. 1998. p27Kip1 is expressed transiently in developing myotomes and enhances myogenesis. Cell Growth Differ. 9: 1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.