26
Views
32
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Brain Lipid Binding Protein in Axon-Schwann Cell Interactions and Peripheral Nerve Tumorigenesis

, , , , , , , , , , & show all
Pages 2213-2224 | Received 10 Jul 2002, Accepted 24 Dec 2002, Published online: 27 Mar 2023

REFERENCES

  • Adlkofer, K., and C. Lai. 2000. Role of neuregulins in glial cell development. Glia 29: 104–111.
  • Anton, E. S., M. A. Marchionni, K.-F. Lee, and P. Rakic. 1997. Role of GGF/neuregulin signaling interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 124: 3501–3510.
  • Arroyo, E. J., J. R. Bermingham, M. G. Rosenfeld, and S. S. Scherer. 1998. Promyelinating Schwann cells express Tst-1/SCIP/Oct-6. J. Neurosci. 18: 7891–7902.
  • Balendiran, G. K., F. Schnutgen, G. Scapin, T. Borchers, N. Xhong, K. Lim, R. Godbout, F. Spener, and J. C. Sacchettini. 2000. Crystal structure and thermodynamic analysis of human brain fatty acid-binding protein. J. Biol. Chem. 275: 27045–27054.
  • Basu, T. N., D. H. Gutmann, J. A. Fletcher, T. W. Glover, F. S. Collins, and J. Downward. 1992. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature 356: 663–664.
  • Bennett, E., K. L. Stenvers, P. K. Lund, and B. Popko. 1994. Cloning and characterization of a cDNA encoding a novel fatty acid binding protein from rat brain. J. Neurochem. 63: 1616–1624.
  • Bisgrove, D. A., E. A. Monckton, M. Packer, and R. Godbout. 2000. Regulation of brain fatty acid-binding protein expression by differential phosphorylation of nuclear factor I in malignant glioma cell lines. J. Biol. Chem. 275: 30668–30676.
  • Bollag, G., and F. McCormick. 1991. Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature 351: 576–579.
  • Boyden, S. 1962. The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leucocytes. J. Exp. Med. 115: 453–466.
  • Brannan, C. I., A. S. Perkins, K. S. Vogel, N. Ratner, M. L. Nordlund, S. W. Reid, A. M. Buchberg, N. A. Jenkins, L. F. Parada, and N. G. Copleland. 1994. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8: 1019–1029.
  • Celis, J. E., M. Ostergaard, B. Basse, A. Celis, J. B. Lauredsin, G. P. Ratz, I. Anderson, B. Hein, H. Wolf, T. Orntoft, and H. H. Rasmussen. 1996. Loss of adipocyte-type fatty acid binding protein and other biomarkers is associated with progression of human bladder transitional cell carcinomas. Cancer Res. 56: 4782–4790.
  • Chandross, K. J., R. I. Cohen, P. Paras, M. Gravel, P. E. Braun, and L. D. Hudson. 1999. Identification and characterization of early glial progenitors using a transgenic selection strategy. J. Neurosci. 19: 759–774.
  • Cichowski, K., and T. Jacks. 2001. NF1 tumor suppressor function: narrowing the GAP. Cell 104: 593–604.
  • Cichowski, K., T. S. Shih, E. Schmitt, S. Santiago, K. Reilly, M. E. McLaughlin, R. T. Bronson, and T. Jacks. 1999. Mouse models of tumor development in neurofibromatosis type 1. Science 286: 2172–2176.
  • Custer, R. P., and S. Sorof. 1984. Target polypeptide of a carcinogen is associated with normal mitosis and carcinogen-induced hyperplasia in adult hepatocytes. Proc. Natl. Acad. Sci. USA 81: 7638–7642.
  • Das, R., R. Hammamieh, R. Neill, M. Melhem, and M. Jett. 2001. Expression pattern of fatty acid-binding proteins in human normal and cancer prostate cells and tissues. Clin. Cancer Res. 7: 1706–1715.
  • DeClue, J. E., S. Heffelfinger, G. Benvenuto, B. Ling, S. Li, W. Rui, W. C. Vass, D. Viskochil, and N. Ratner. 2000. Epidermal growth factor receptor expression in neurofibromatosis type-1 related tumors and NF1 animal models. J. Clin. Investig. 105: 1–10.
  • DeClue, J. E., A. G. Papageorge, J. A. Fletcher, S. R. Diehl, N. Ratner, W. C. Vass, and D. R. Lowy. 1992. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell 69: 265–273.
  • Dong, Z., A. Sinanan, D. Parkinson, E. Parmantier, R. Mirsky, and K. R. Jessen. 1999. Schwann cell development in embryonic mouse nerves. J. Neurosci. Res. 56: 334–348.
  • Feng, L., M. E. Hatten, and N. Heintz. 1994. Brain lipid binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron 12: 895–908.
  • Feng, L., and N. Heintz. 1995. Differentiating neurons activate transcription of the brain lipid binding protein gene in radial glia through a novel regulatory element. Development 121: 1719–1730.
  • Godbout, R., D. A. Bisgrove, D. Shkolny, and R. S. Day. 1998. Correlation of B-FABP and GFAP expression in malignant glioma. Oncogene 16: 1955–1962.
  • Golubic, M., J. A. Harwalkar, S. S. Bryant, V. Sundaram, R. Jove, and J. H. Lee. 1998. Differential regulation of neurofibromin and p120 GTPase-activating protein by nutritionally relevant fatty acids. Nutr. Cancer 30: 97–107.
  • Guha, A., N. Lau, I. Huvar, D. Gutman, J. Provias, T. Pawson, and G. Boss. 1996. Ras-GTP levels are elevated in human NF1 peripheral nerve tumors. Oncogene 12: 507–513.
  • Gygi, S. P., Y. Rochon, B. R. Franza, and R. Aebersold. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19: 1720–1730.
  • Han, J. W., F. McCormick, and I. G. Macara. 1991. Regulation of Ras-GAP and the neurofibromatosis-1 gene product by eicosanoids. Science 252: 576–579.
  • Ideker, T., V. Thorsson, J. A. Ranish, R. Christmas, J. Buhler, J. K. Eng, R. Bumgarner, D. R. Goodlett, R. Aebersold, and L. Hood. 2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292: 929–934.
  • Jacks, T., T. S. Shih, E. M. Schmitt, R. T. Bronson, A. Bernards, and R. A. Weinberg. 1994. Tumor predisposition in mice heterozygous for a targeted mutation in NF1. Nat. Genet. 7: 353–361.
  • Josephson, R., T. Muller, J. Pickel, S. Okabe, K. Reynolds, P. A. Turner, A. Zimmer, and R. D. McKay. 1998. POU transcription factors control expression of CNS stem cell-specific genes. Development 125: 3087–3100.
  • Kim, H. A., B. Ling, and N. Ratner. 1997. Nf1-deficient mouse Schwann cells are angiogenic and invasive and can be induced to hyperproliferate: reversion of some phenotypes by an inhibitor of farnesyl protein transferase. Mol. Cell. Biol. 17: 862–872.
  • Kim, H. A., T. Rosenbaum, M. A. Marchionni, N. Ratner, and J. E. DeClue. 1995. Schwann cells from neurofibromin deficient mice exhibit activation of p21ras, inhibition of cell proliferation and morphological changes. Oncogene 11: 325–335.
  • Kluwe, L., R. Friedrich, and V. Mautner. 1999. Loss of NF1 allele in Schwann cells but not fibroblasts derived from an NF1-associated neurofibroma. Genes Chromosomes Cancer 24: 283–285.
  • Kohl, N. E., S. D. Mosser, J. deSolms, E. A. Giuliani, D. L. Pompliano, S. L. Graham, R. L. Smith, E. M. Scolnick, A. Oliff, and J. B. Gibbs. 1995. Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat. Med. 1: 792–797.
  • Kurtz, A., A. Zimmer, F. Schnutgen, G. Bruning, F. Spener, and T. Muller. 1994. The expression pattern of a novel gene encoding brain-fatty acid binding protein correlates with neuronal and glial cell development. Development 120: 2637–2649.
  • Legius, E., D. A. Marchuk, F. S. Collins, and T. W. Glover. 1993. Somatic deletion of the neurofibromatosis type 1 gene in a neurofibrosarcoma supports a tumor suppressor gene hypothesis. Nat. Genet. 3: 122–126.
  • Li, H., S. Velasco-Miguel, W. C. Vass, L. F. Parada, and J. E. DeClue. 2002. Epidermal growth factor receptor signaling pathways are associated with tumorigenesis in the Nf1:p53 mouse tumor model. Cancer Res. 62: 4507–4513.
  • Nieke, J., and M. Schachner. 1985. Expression of the neural cell adhesion molecules L1 and N-CAM and their common carbohydrate epitope L2/HNK-1 during development and after transection of the mouse sciatic nerve. Differentiation 30: 141–151.
  • Parysek, L. M., and R. D. Goldman. 1987. Characterization of intermediate filaments in PC12 cells. J. Neurosci. 7: 781–791.
  • Quilliam, L. A., K. Kato, K. M. Rabun, M. M. Hisaka, S. Y. Huff, S. Campbell-Burk, and C. J. Der. 1994. Identification of residues critical for Ras(17N) growth-inhibitory phenotype and for Ras interactions with guanine nucleotide exchange factors. Mol. Cell. Biol. 14: 1113–1121.
  • Rajeevan, M. S., D. G. Ranamukhaarachchi, S. D. Vernon, and E. R. Unger. 2001. Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologies. Methods 25: 443–451.
  • Ramdas, L., K. R. Coombes, K. Baggerly, L. Abruzzo, W. E. Highsmith, T. Krogman, S. R. Hamilton, and W. Zhang. 2001. Sources of nonlinearity in cDNA microarray expression measurements. Genome Biol. 2: 1–7.
  • Rasmussen, H. H., T. F. Orntoft, H. Wolf, and J. E. Celis. 1996. Towards a comprehensive database of proteins from the urine of patients with bladder cancer. J. Urol. 155: 2113–2119.
  • Richieri, G. V., R. T. Ogata, A. W. Zimmerman, J. H. Veerkamp, and A. M. Kleinfeld. 2000. Fatty acid binding proteins from different tissues show distinct patterns of fatty acid interactions. Biochemistry 39: 7197–7204.
  • Rickman, D. S., M. P. Bobek, D. E. Misek, R. Kuick, M. Blaivas, D. M. Kurnit, J. Taylor, and S. Hanash. 2001. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis. Cancer Res. 61: 6885–6891.
  • Rizvi, T. A., Y. Huang, A. Sidani, R. Atit, D. A. Largaespada, R. E. Boissy, and N. Ratner. 2002. A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. J. Neurosci. 22: 9831–9840.
  • Sebti, S., and A. D. Hamilton. 1997. Inhibitors of prenyl transferases. Curr. Opin. Oncol. 9: 557–561.
  • Sermon, B. A., J. F. Eccleston, R. H. Skinner, and P. N. Lowe. 1996. Mechanism of inhibition by arachidonic acid of the catalytic activity of Ras GTPase-activating proteins. J. Biol. Chem. 271: 1566–1572.
  • Serra, E., T. Rosenbaum, U. Winner, R. Aledo, E. Ars, X. Estivill, H.-G. Lenard, and C. Lazaro. 2000. Schwann cells harbor the somatic NF1 mutation in neurofibromas: evidence of two different Schwann cell populations. Hum. Mol. Genet. 9: 3055–3064.
  • Sherman, L. S., R. Atit, T. Rosenbaum, A. D. Cox, and N. Ratner. 2000. Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. J. Biol. Chem. 275: 30740–30745.
  • Shimizu, F., T. K. Watanabe, H. Shinomiya, Y. Nakamura, and T. Fujiwara. 1997. Isolation and expression of a cDNA for human brain fatty acid-binding protein (B-FABP). Biochim. Biophys. Acta 1354: 24–28.
  • Tamanoi, F. 1993. Inhibitors of Ras: farnesyltransferases. Trends Biochem. Sci. 18: 349–353.
  • Velu, T. J., L. Beguinot, W. C. Vass, M. C. Willingham, G. T. Merlino, I. Pastan, and D. R. Lowy. 1987. Epidermal growth factor-dependent transformation by a human EGF receptor proto-oncogene. Science 238: 1408–1410.
  • Vogel, K. S., L. J. Klesse, S. Velasco-Miguel, K. Meyers, E. J. Rushing, and L. F. Parada. 1999. Mouse tumor model for neurofibromatosis type 1. Science 286: 2176–2179.
  • Webster, H. D. 1993. Development of peripheral nerve fibers, p. 243–266. In P. J. Dyck, P. K. Thomas, P. A. Low, and J. F. Poduslo (ed.), Peripheral neuropathy. The W. B. Saunders Co., Philadelphia, Pa.
  • White, M. A., C. Nicolette, A. Minden, A. Polverino, L. Van Aelst, M. Karin, and M. H. Wigler. 1995. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80: 533–541.
  • Xu, L. Z., R. Sanchez, A. Sali, and N. Heintz. 1996. Ligand specificity of brain lipid-binding protein. J. Biol. Chem. 271: 24711–24719.
  • Yan, N., C. Ricca, J. Fletcher, T. Glover, B. R. Seizinger, and V. Manne. 1995. Farnesyltransferase inhibitors block the neurofibromatosis type 1 (NF1) malignant phenotype. Cancer Res. 55: 3569–3575.
  • Yarden, Y., and M. X. Sliwkowski. 2001. Untangling the ErbB signalling network. Nat. Rev. 2: 127–137.
  • Zhu, Y., P. Ghosh, P. Charnay, D. K. Burns, and L. F. Parada. 2002. NF1 associated neurofibromas initiate in Schwann cells and require a haploinsufficient environment. Science 296: 920–922.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.