150
Views
368
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Mnk2 and Mnk1 Are Essential for Constitutive and Inducible Phosphorylation of Eukaryotic Initiation Factor 4E but Not for Cell Growth or Development

, , , &
Pages 6539-6549 | Received 12 Mar 2004, Accepted 01 May 2004, Published online: 27 Mar 2023

REFERENCES

  • Chang, L., and Karin M.. 2001. Mammalian MAP kinase signalling cascades. Nature 410:37–40.
  • Cohen, N., Sharma M., Kentsis A., Perez J. M., Strudwick S., and Borden K. L.. 2001. PML RING suppresses oncogenic transformation by reducing the affinity of eIF4E for mRNA. EMBO J. 20:4547–4559.
  • Connor, J. H., and Lyles D. S.. 2002. Vesicular stomatitis virus infection alters the eIF4F translation initiation complex and causes dephosphorylation of the eIF4E binding protein 4E-BP1. J. Virol. 76:10177–10187.
  • Cuesta, R., Xi Q., and Schneider R. J.. 2000. Adenovirus-specific translation by displacement of kinase Mnk1 from cap-initiation complex eIF4F. EMBO J. 19:3465–3474.
  • Davis, R. J. 2000. Signal transduction by the JNK group of MAP kinases. Cell 103:239–252.
  • De Benedetti, A., and Rhoads R. E.. 1990. Overexpression of eukaryotic protein synthesis initiation factor 4E in HeLa cells results in aberrant growth and morphology. Proc. Natl. Acad. Sci. USA 87:8212–8216.
  • De Benedetti, A., and Harris A. L.. 1999. eIF4E expression in tumors: its possible role in progression of malignancies. Int. J. Biochem. Cell Biol. 31:59–72.
  • Dostie, J., Lejbkowicz F., and Sonenberg N.. 2000. Nuclear eukaryotic initiation factor 4E (eIF4E) colocalizes with splicing factors in speckles. J. Cell Biol. 148:239–247.
  • Duncan, R. F., Cavener D. R., and Qu S.. 1995. Heat shock effects on phosphorylation of protein synthesis initiation factor proteins eIF-4E and eIF-2 alpha in Drosophila. Biochemistry (Moscow) 34:2985–2997.
  • Duncan, R. F., Peterson H., Hagedorn C. H., and Sevanian A.. 2003. Oxidative stress increases eukaryotic initiation factor 4E phosphorylation in vascular cells. Biochem. J. 369:213–225.
  • Flynn, A., and Proud C. G.. 1995. Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. J. Biol. Chem. 270:21684–21688.
  • Fukunaga, R., and Hunter T.. 1997. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16:1921–1933.
  • Gingras, A. C., Raught B., and Sonenberg N.. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68:913–963.
  • Gingras, A. C., Raught B., and Sonenberg N.. 2001. Regulation of translation initiation by FRAP/mTOR. Genes Dev. 15:807–826.
  • Hefner, Y., Borsch-Haubold A. G., Murakami M., Wilde J. I., Pasquet S., Schieltz D., Ghomashchi F., Yates III J. R., Armstrong C. G., Paterson A., Cohen P., Fukunaga R., Hunter T., Kudo I., Watson S. P., and Gelb M. H.. 2000. Serine 727 phosphorylation and activation of cytosolic phospholipase A2 by MNK1-related protein kinases. J. Biol. Chem. 275:37542–37551.
  • Herbert, T. P., Kilhams G. R., Batty I. H., and Proud C. G.. 2000. Distinct signalling pathways mediate insulin and phorbol ester-stimulated eukaryotic initiation factor 4F assembly and protein synthesis in HEK 293 cells. J. Biol. Chem. 275:11249–11256.
  • Jiang, C., and Schuman E. M.. 2002. Regulation and function of local protein synthesis in neuronal dendrites. Trends Biochem. Sci. 27:506–513.
  • Joshi, B., Cai A. L., Keiper B. D., Minich W. B., Mendez R., Beach C. M., Stepinski J., Stolarski R., Darzynkiewicz E., and Rhoads R. E.. 1995. Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209. J. Biol. Chem. 270:14597–14603.
  • Kelleher, R. J., III, Govindarajan A., Jung H.-Y., Kang H., and Tonegawa S.. 2004. Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116:467–479.
  • Kleijn, M., Scheper G. C., Voorma H. O., and Thomas A. A.. 1998. Regulation of translation initiation factors by signal transduction. Eur. J. Biochem. 253:531–544.
  • Knauf, U., Tschopp C., and Gram H.. 2001. Negative regulation of protein translation by mitogen-activated protein kinase-interacting kinases 1 and 2. Mol. Cell. Biol. 21:5500–5511.
  • Kondoh, G., Yamamoto Y., Yoshida K., Suzuki Y., Osuka S., Nakano Y., Morita T., and Takeda J.. 1999. Easy assessment of ES cell clone potency for chimeric development and germ-line competency by an optimized aggregation method. J. Biochem. Biophys. Methods 39:137–142.
  • Kotlyarov, A., Neininger A., Schubert C., Eckert R., Birchmeier C., Volk H. D., and Gaestel M.. 1999. MAPKAP kinase 2 is essential for LPS-induced TNF-alpha biosynthesis. Nat. Cell Biol. 1:94–97.
  • Kyriakis, J. M., and Avruch J.. 2001. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81:807–869.
  • Lachance, P. E., Miron M., Raught B., Sonenberg N., and Lasko P.. 2002. Phosphorylation of eukaryotic translation initiation factor 4E is critical for growth. Mol. Cell. Biol. 22:1656–1663.
  • Lai, H. K., and Borden K. L.. 2000. The promyelocytic leukemia (PML) protein suppresses cyclin D1 protein production by altering the nuclear cytoplasmic distribution of cyclin D1 mRNA. Oncogene 19:1623–1634.
  • Lazaris-Karatzas, A., Montine K. S., and Sonenberg N.. 1990. Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345:544–547.
  • Lejbkowicz, F., Goyer C., Darveau A., Neron S., Lemieux R., and Sonenberg N.. 1992. A fraction of the mRNA 5′ cap-binding protein, eukaryotic initiation factor 4E, localizes to the nucleus. Proc. Natl. Acad. Sci. USA 89:9612–9616.
  • Marcotrigiano, J., Gingras A. C., Sonenberg N., and Burley S. K.. 1997. Cocrystal structure of the messenger RNA 5′ cap-binding protein (eIF4E) bound to 7-methyl-GDP. Cell 89:951–961.
  • McKendrick, L., Morley S. J., Pain V. M., Jagus R., and Joshi B.. 2001. Phosphorylation of eukaryotic initiation factor 4E (eIF4E) at Ser209 is not required for protein synthesis in vitro and in vivo. Eur. J. Biochem. 268:5375–5385.
  • Minich, W. B., Balasta M. L., Goss D. J., and Rhoads R. E.. 1994. Chromatographic resolution of in vivo phosphorylated and nonphosphorylated eukaryotic translation initiation factor eIF-4E: increased cap affinity of the phosphorylated form. Proc. Natl. Acad. Sci. USA 91:7668–7672.
  • Morley, S. J. 1997. Intracellular signalling pathways regulating initiation factor eIF4E phosphorylation during the activation of cell growth. Biochem. Soc. Trans. 25:503–509.
  • Morley, S. J., and McKendrick L.. 1997. Involvement of stress-activated protein kinase and p38/RK mitogen-activated protein kinase signaling pathways in the enhanced phosphorylation of initiation factor 4E in NIH 3T3 cells. J. Biol. Chem. 272:17887–17893.
  • Morley, S. J., and Naegele S.. 2002. Phosphorylation of eukaryotic initiation factor (eIF) 4E is not required for de novo protein synthesis following recovery from hypertonic stress in human kidney cells. J. Biol. Chem. 277:32855–32859.
  • Neininger, A., Kontoyiannis D., Kotlyarov A., Winzen R., Eckert R., Volk H. D., Holtmann H., Kollias G., and Gaestel M.. 2002. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J. Biol. Chem. 277:3065–3068.
  • Nikolcheva, T., Pyronnet S., Chou S. Y., Sonenberg N., Song A., Clayberger C., and Krensky A. M.. 2002. A translational rheostat for RFLAT-1 regulates RANTES expression in T lymphocytes. J. Clin. Investig. 110:119–126.
  • Parra-Palau, J. L., Scheper G. C., Wilson M. L., and Proud C. G.. 2003. Features in the N and C termini of the MAPK-interacting kinase Mnk1 mediate its nucleocytoplasmic shuttling. J. Biol. Chem. 278:44197–44204.
  • Pearson, G., Robinson F., Beers Gibson T., Xu B. E., Karandikar M., Berman K., and Cobb M. H.. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22:153–183.
  • Poulin, F., Gingras A. C., Olsen H., Chevalier S., and Sonenberg N.. 1998. 4E-BP3, a new member of the eukaryotic initiation factor 4E-binding protein family. J. Biol. Chem. 273:14002–14007.
  • Pyronnet, S., Imataka H., Gingras A. C., Fukunaga R., Hunter T., and Sonenberg N.. 1999. Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J. 18:270–279.
  • Pyronnet, S. 2000. Phosphorylation of the cap-binding protein eIF4E by the MAPK-activated protein kinase Mnk1. Biochem. Pharmacol. 60:1237–1243.
  • Rosenwald, I. B., Kaspar R., Rousseau D., Gehrke L., Leboulch P., Chen J. J., Schmidt E. V., Sonenberg N., and London I. M.. 1995. Eukaryotic translation initiation factor 4E regulates expression of cyclin D1 at transcriptional and post-transcriptional levels. J. Biol. Chem. 270:21176–21180.
  • Rousseau, D., Kaspar R., Rosenwald I., Gehrke L., and Sonenberg N.. 1996. Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc. Natl. Acad. Sci. USA 93:1065–1070.
  • Ruggero, D., Montanaro L., Ma L., Xu W., Londei P., Cordon-Cardo C., and Pandolfi P. P.. 2004. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat. Med. 10:484–486. (First published 18 April 2004; 10.1038/nm1042.)
  • Saghir, A. N., Tuxworth W. J., Jr., Hagedorn C. H., and McDermott P. J.. 2001. Modifications of eukaryotic initiation factor 4F (eIF4F) in adult cardiocytes by adenoviral gene transfer: differential effects on eIF4F activity and total protein synthesis rates. Biochem. J. 356:557–566.
  • Scheper, G. C., Morrice N. A., Kleijn M., and Proud C. G.. 2001. The mitogen-activated protein kinase signal-integrating kinase Mnk2 is a eukaryotic initiation factor 4E kinase with high levels of basal activity in mammalian cells. Mol. Cell. Biol. 21:743–754.
  • Scheper, G. C., and Proud C. G.. 2002. Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur. J. Biochem. 269:5350–5359.
  • Scheper, G. C., van Kollenburg B., Hu J., Luo Y., Goss D. J., and Proud C. G.. 2002. Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J. Biol. Chem. 277:3303–3309.
  • Scheper, G. C., Parra J. L., Wilson M., Van Kollenburg B., Vertegaal A. C., Han Z. G., and Proud C. G.. 2003. The N and C termini of the splice variants of the human mitogen-activated protein kinase-interacting kinase Mnk2 determine activity and localization. Mol. Cell. Biol. 23:5692–5705.
  • Slentz-Kesler, K., Moore J. T., Lombard M., Zhang J., Hollingsworth R., and Weiner M. P.. 2000. Identification of the human Mnk2 gene (MKNK2) through protein interaction with estrogen receptor beta. Genomics 69:63–71.
  • Smart, F. M., Edelman G. M., and Vanderklish P. W.. 2003. BDNF induces translocation of initiation factor 4E to mRNA granules: evidence for a role of synaptic microfilaments and integrins. Proc. Natl. Acad. Sci. USA 100:14403–14408.
  • Steward, O., and Schuman E. M.. 2001. Protein synthesis at synaptic sites on dendrites. Annu. Rev. Neurosci. 24:299–325.
  • Tomoo, K., Shen X., Okabe K., Nozoe Y., Fukuhara S., Morino S., Ishida T., Taniguchi T., Hasegawa H., Terashima A., Sasaki M., Katsuya Y., Kitamura K., Miyoshi H., Ishikawa M., and Miura K.. 2002. Crystal structures of 7-methylguanosine 5′-triphosphate (m7GTP)- and P1-7-methylguanosine-P3-adenosine-5′,5′-triphosphate (m7GpppA)-bound human full-length eukaryotic initiation factor 4E: biological importance of the C-terminal flexible region. Biochem. J. 362:539–544.
  • Tomoo, K., Shen X., Okabe K., Nozoe Y., Fukuhara S., Morino S., Sasaki M., Taniguchi T., Miyagawa H., Kitamura K., Miura K., and Ishida T.. 2003. Structural features of human initiation factor 4E, studied by X-ray crystal analyses and molecular dynamics simulations. J. Mol. Biol. 328:365–383.
  • Topisirovic, I., Capili A. D., and Borden K. L.. 2002. Gamma interferon and cadmium treatments modulate eukaryotic initiation factor 4E-dependent mRNA transport of cyclin D1 in a PML-dependent manner. Mol. Cell. Biol. 22:6183–6198.
  • Topisirovic, I., Culjkovic B., Cohen N., Perez J. M., Skrabanek L., and Borden K. L.. 2003. The proline-rich homeodomain protein, PRH, is a tissue-specific inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth. EMBO J. 22:689–703.
  • Tuxworth, W. J., Jr., Saghir A. N., Spruill L. S., Menick D. R., and McDermott P. J.. 2004. Regulation of protein synthesis by eIF4E phosphorylation in adult cardiocytes: the consequence of secondary structure in the 5′-untranslated region of mRNA. Biochem. J. 378:73–82.
  • Walsh, D., and Mohr I.. 2004. Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells. Genes Dev. 18:660–672.
  • Wang, X., Flynn A., Waskiewicz A. J., Webb B. L., Vries R. G., Baines I. A., Cooper J. A., and Proud C. G.. 1998. The phosphorylation of eukaryotic initiation factor eIF4E in response to phorbol esters, cell stresses, and cytokines is mediated by distinct MAP kinase pathways. J. Biol. Chem. 273:9373–9377.
  • Waskiewicz, A. J., Flynn A., Proud C. G., and Cooper J. A.. 1997. Mitogen-activated protein kinases activate the serine/threonine kinases Mnk1 and Mnk2. EMBO J. 16:1909–1920.
  • Waskiewicz, A. J., Johnson J. C., Penn B., Mahalingam M., Kimball S. R., and Cooper J. A.. 1999. Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol. Cell. Biol. 19:1871–1880.
  • Wendel, H. G., De Stanchina E., Fridman J. S., Malina A., Ray S., Kogan S., Cordon-Cardo C., Pelletier J., and Lowe S. W.. 2004. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428:332–337.
  • Whalen, S. G., Gingras A. C., Amankwa L., Mader S., Branton P. E., Aebersold R., and Sonenberg N.. 1996. Phosphorylation of eIF-4E on serine 209 by protein kinase C is inhibited by the translational repressors, 4E-binding proteins. J. Biol. Chem. 271:11831–11837.
  • Zuberek, J., Wyslouch-Cieszynska A., Niedzwiecka A., Dadlez M., Stepinski J., Augustyniak W., Gingras A. C., Zhang Z., Burley S. K., Sonenberg N., Stolarski R., and Darzynkiewicz E.. 2003. Phosphorylation of eIF4E attenuates its interaction with mRNA 5′ cap analogs by electrostatic repulsion: intein-mediated protein ligation strategy to obtain phosphorylated protein. RNA 9:52–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.