33
Views
95
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Requirement of the Mre11 Complex and Exonuclease 1 for Activation of the Mec1 Signaling Pathway

, &
Pages 10016-10025 | Received 21 Jun 2004, Accepted 22 Aug 2004, Published online: 27 Mar 2023

REFERENCES

  • Abraham, R. T. 2001. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15:2177–2196.
  • Bakkenist, C. J., and Kastan M. B.. 2003. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506.
  • Bermudez, V. P., Lindsey-Boltz L. A., Cesare A. J., Maniwa Y., Griffith J. D., Hurwitz J., and Sancar A.. 2003. Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc. Natl. Acad. Sci. USA 100:1633–1638.
  • Carson, C. T., Schwartz R. A., Stracker T. H., Lilley C. E., Lee D. V., and Weitzman M. D.. 2003. The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J. 22:6610–6620.
  • Chan, S. W., Chang J., Prescott J., and Blackburn E. H.. 2001. Altering telomere structure allows telomerase to act in yeast lacking ATM kinases. Curr. Biol. 11:1240–1250.
  • Cortez, D., Guntuku S., Qin J., and Elledge S. J.. 2001. ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716.
  • Costanzo, V., Robertson K., Bibikova M., Kim E., Grieco D., Gottesman M., Carroll D., and Gautier J.. 2001. Mre11 protein complex prevents double-strand break accumulation during chromosomal DNA replication. Mol. Cell 8:137–147.
  • D'Amours, D., and Jackson S. P.. 2002. The Mre11 complex: at the crossroads of dna repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 3:317–327.
  • D'Amours, D., and Jackson S. P.. 2001. The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 15:2238–2249.
  • de-Laat, W. L., Jaspers N. G., and Hoeijmakers J. H.. 1999. Molecular mechanism of nucleotide excision repair. Genes Dev. 13:768–785.
  • Elledge, S. J. 1996. Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672.
  • Ellison, V., and Stillman B.. 2003. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5′ recessed DNA. PLoS Biol. 1:E33.
  • Fiorentini, P., Huang K. N., Tishkoff D. X., Kolodner R. D., and Symington L. S.. 1997. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol. Cell. Biol. 17:2764–2773.
  • Friedberg, E. C., Walker G. C., and Siede W.. 1995. DNA repair and mutagenesis. ASM Press, Washington, D.C.
  • Giannattasio, M., Lazzaro F., Longhese M. P., Plevani P., and Muzi-Falconi M.. 2004. Physical and functional interactions between nucleotide excision repair and DNA damage checkpoint. EMBO J. 23:429–438.
  • Gietz, R. D., and Sugino A.. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Green, C. M., Erdjument-Bromage H., Tempst P., and Lowndes N. F.. 2000. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr. Biol. 10:39–42.
  • Greenwell, P. W., Kronmal S. L., Porter S. E., Gassenhuber J., Obermaier B., and Petes T. D.. 1995. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82:823–829.
  • Grenon, M., Gilbert C., and Lowndes N. F.. 2001. Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat. Cell Biol. 3:844–847.
  • Haber, J. E. 1998. The many interfaces of Mre11. Cell 95:583–586.
  • Ivanov, E. L., Sugawara N., White C. I., Fabre F., and Haber J. E.. 1994. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3414–3425.
  • Kastan, M. B., and Lim D. S.. 2000. The many substrates and functions of ATM. Nat. Rev. Mol. Cell Biol. 1:179–186.
  • Katou, Y., Kanoh Y., Bando M., Noguchi H., Tanaka H., Ashikari T., Sugimoto K., and Shirahige K.. 2003. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1073–1083.
  • Kitagawa, R., Bakkenist C. J., McKinnon P. J., and Kastan M. B.. 2004. Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev. 18:1423–1438.
  • Kondo, T., Wakayama T., Naiki T., Matsumoto K., and Sugimoto K.. 2001. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 5543:867–870.
  • Lee, J. H., and Paull T. T.. 2004. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304:93–96.
  • Lee, S. E., Bressan D. A., Petrini J. H., and Haber J. E.. 2002. Complementation between N-terminal Saccharomyces cerevisiae mre11 alleles in DNA repair and telomere length maintenance. DNA Repair (Amsterdam) 1:27–40.
  • Lee, S. E., Moore J. K., Holmes A., Umezu K., Kolodner R. D., and Haber J. E.. 1998. Saccharomyces Ku70, Mre11/Rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399–409.
  • Longhese, M. P., Foiani M., Muzi-Falconi M., Lucchini G., and Plevani P.. 1998. DNA damage checkpoint in budding yeast. EMBO J. 17:5525–5528.
  • Lucca, C., Vanoli F., Cotta-Ramusino C., Pellicioli A., Liberi G., Haber J., and Foiani M.. 2004. Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23:1206–1213.
  • Majka, J., and Burgers P. M.. 2003. Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proc. Natl. Acad. Sci. USA 100:2249–2254.
  • Melo, J. A., Cohen J., and Toczyski D. P.. 2001. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 21:2809–2821.
  • Moreau, S., Ferguson J. R., and Symington L. S.. 1999. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19:556–566.
  • Moreau, S., Morgan E. A., and Symington L. S.. 2001. Overlapping functions of the Saccharomyces cerevisiae Mre11, Exo1 and Rad27 nucleases in DNA metabolism. Genetics 159:1423–1433.
  • Morrow, D. M., Tagle D. A., Shiloh Y., Collins F. S., and Hieter P.. 1995. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene, MEC1. Cell 82:831–840.
  • Naiki, T., Shimomura T., Kondo T., Matsumoto K., and Sugimoto K.. 2000. Rfc5, in cooperation with Rad24, controls DNA damage checkpoints throughout the cell cycle in Saccharomyces cerevisiae. Mol. Cell. Biol. 20:5888–5896.
  • Naiki, T., Wakayama T., Nakada D., Matsumoto K., and Sugimoto K.. 2004. Association of Rad9 with double-strand breaks through a Mec1-dependent mechanism. Mol. Cell. Biol. 24:3277–3285.
  • Nakada, D., Matsumoto K., and Sugimoto K.. 2003. ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev. 17:1957–1962.
  • Nakada, D., Shimomura T., Matsumoto K., and Sugimoto K.. 2003. The ATM-related Tel1 protein of Saccharomyces cerevisiae controls a checkpoint response following phleomycin treatment. Nucleic Acids Res. 31:1715–1724.
  • Osborn, A. J., and Elledge S. J.. 2003. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev. 17:1755–1767.
  • Paciotti, V., Clerici M., Lucchini G., and Longhese M. P.. 2000. The checkpoint protein Ddc2, functionally related to S. pombe Rad26, interacts with Mec1 and is regulated by Mec1-dependent phosphorylation in budding yeast. Genes Dev. 14:2046–2059.
  • Pellicioli, A., Lee S. E., Lucca C., Foiani M., and Haber J. E.. 2001. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol. Cell 7:293–300.
  • Petrini, J. H. 2000. The Mre11 complex and ATM: collaborating to navigate S phase. Curr. Opin. Cell Biol. 12:293–296.
  • Qiu, J., Guan M. X., Bailis A. M., and Shen B.. 1998. Saccharomyces cerevisiae exonuclease-1 plays a role in UV resistance that is distinct from nucleotide excision repair. Nucleic Acids Res. 26:3077–3783.
  • Ritchie, K. B., Mollory J. C., and Petes T. D.. 1999. Interactions of TLC1 (which encodes the RNA subunit of telomerase), TEL1, and MEC1 in regulating telomere length in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 19:6065–6075.
  • Ritchie, K. B., and Petes T. D.. 2000. The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast. Genetics 155:475–479.
  • Rouse, J., and Jackson S. P.. 2000. LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. EMBO J. 19:5793–5800.
  • Rouse, J., and Jackson S. P.. 2002. Lcd1p recruits Mec1p to DNA lesions in vitro and in vivo. Mol. Cell 9:857–869.
  • Sanchez, Y., Bachant J., Wang H., Hu F., Liu D., Tetzlaff M., and Elledge S. J.. 1999. Control of the DNA damage checkpoint by chk1 and rad53 protein kinases through distinct mechanisms. Science 286:1166–1171.
  • Sanchez, Y., Desany B. A., Jones W. J., Liu Q., Wang B., and Elledge S. J.. 1996. Regulation of RAD53 by the ATM-like kinase MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271:357–360.
  • Takata, H., Kanoh Y., Gunge N., Shirahige K., and Matsuura A.. 2004. Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeres in vivo. Mol. Cell 14:515–522.
  • Tishkoff, D. X., Amin N. S., Viars C. S., Arden K. C., and Kolodner R. D.. 1998. Identification of a human gene encoding a homologue of Saccharomyces cerevisiae EXO1, an exonuclease. Cancer Res. 58:5027–5031.
  • Toczyski, D. P., Galgoczy D. J., and Hartwell L. H.. 1997. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90:1097–1106.
  • Tsubouchi, H., and Ogawa H.. 2000. Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol. Biol. Cell 11:2221–2233.
  • Umezu, K., Sugawara N., Chen C., Haber J. E., and Kolodner R. D.. 1998. Genetic analysis of yeast RPA1 reveals its multiple functions in DNA metabolism. Genetics 148:989–1005.
  • Usui, T., Ogawa H., and Petrini J. H.. 2001. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7:1255–1266.
  • Uziel, T., Lerenthal Y., Moyal L., Andegeko Y., Mittelman L., and Shiloh Y.. 2003. Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22:5612–5621.
  • Vialard, J. E., Gilbert C. S., Green C. M., and Lowndes N. F.. 1998. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J. 17:5679–5688.
  • Wakayama, T., Kondo T., Ando S., Matsumoto K., and Sugimoto K.. 2001. Pie1, a protein interacting with Mec1, controls cell growth and checkpoint responses in Saccharomyces cerevisiae. Mol. Cell. Biol. 21:755–764.
  • White, C. I., and Haber J. E.. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9:663–673.
  • Wold, M. S. 1997. Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66:61–92.
  • Zhang, H., Taylor J., and Siede W.. 2003. Checkpoint arrest signaling in response to UV damage is independent of nucleotide excision repair in Saccharomyces cerevisiae. J. Biol. Chem. 278:9382–9387.
  • Zhao, X., Muller E. G. D., and Rothstein R.. 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pool. Mol. Cell 2:329–340.
  • Zhou, B.-B. S., and Elledge S. J.. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408:433–439.
  • Zou, L., and Elledge S. J.. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548.
  • Zou, L., Liu D., and Elledge S. J.. 2003. Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc. Natl. Acad. Sci. USA 100:13827–13832.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.