75
Views
65
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Amino Acid Signaling in Yeast: Casein Kinase I and the Ssy5 Endoprotease Are Key Determinants of Endoproteolytic Activation of the Membrane-Bound Stp1 Transcription Factor

, , , &
Pages 9771-9785 | Received 14 May 2004, Accepted 18 Aug 2004, Published online: 27 Mar 2023

REFERENCES

  • Abdel-Sater, F., Iraqui I., Urrestarazu A., and André B.. 2004. The external amino acid signalling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae. Genetics 166:1727–1739.
  • André, B., Hein C., Grenson M., and Jauniaux J. C.. 1993. Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol. Gen. Genet. 237:17–25.
  • Andreasson, C., and Ljungdahl P. O.. 2002. Receptor-mediated endoproteolytic activation of two transcription factors in yeast. Genes Dev. 16:3158–3172.
  • Ausubel, F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., and Struhl K.. 1995. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y.
  • Babu, P., Bryan J. D., Panek H. R., Jordan S. L., Forbrich B. M., Kelley S. C., Colvin R. T., and Robinson L. C.. 2002. Plasma membrane localization of the Yck2p yeast casein kinase 1 isoform requires the C-terminal extension and secretory pathway function. J. Cell Sci. 115:4957–4968.
  • Barnes, D., Lai W., Breslav M., Naider F., and Becker J. M.. 1998. PTR3, a novel gene mediating amino acid-inducible regulation of peptide transport in Saccharomyces cerevisiae. Mol. Microbiol. 29:297–310.
  • Bernard, F., and André B.. 2001. Genetic analysis of the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. Mol. Microbiol. 41:489–502.
  • Bernard, F., and André B.. 2001. Ubiquitin and the SCFGrr1 ubiquitin ligase complex are involved in the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. FEBS Lett. 496:81–85.
  • Béchet, J., Grenson M., and Wiame J. M.. 1970. Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae. Eur. J. Biochem. 12:31–39.
  • Betina, S., Goffrini P., Ferrero I., and Wesolowski-Louvel M.. 2001. RAG4 gene encodes a glucose sensor in Kluyveromyces lactis. Genetics 158:541–548.
  • Blaisonneau, J., Fukuhara H., and Wesolowski-Louvel M.. 1997. The Kluyveromyces lactis equivalent of casein kinase I is required for the transcription of the gene encoding the low-affinity glucose permease. Mol. Gen. Genet. 253:469–477.
  • Boles, E., and André B.. 2004. Role of transporter-like sensors in glucose and amino acid signalling in yeast. Top. Curr. Genet. 9:121–153.
  • Brown, J. L., Jaquenoud M., Gulli M. P., Chant J., and Peter M.. 1997. Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev. 11:2972–2982.
  • Clausen, T., Southan C., and Ehrmann M.. 2002. The HtrA family of proteases: implications for protein composition and cell fate. Mol. Cell 10:443–455.
  • Cooper, T. G. 2002. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol. Rev. 26:223–238.
  • de Boer, M., Bebelman J. P., Goncalves P. M., Maat J., Van Heerikhuizen H., and Planta R. J.. 1998. Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae. Mol. Microbiol. 30:603–613.
  • de Boer, M., Nielsen P. S., Bebelman J. P., Heerikhuizen H., Andersen H. A., and Planta R. J.. 2000. Stp1p, Stp2p and Abf1p are involved in regulation of expression of the amino acid transporter gene BAP3 of Saccharomyces cerevisiae. Nucleic Acids Res. 28:974–981.
  • Deshaies, R. J. 1999. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15:435–467.
  • Didion, T., Regenberg B., Jorgensen M. U., Kielland-Brandt M. C., and Andersen H. A.. 1998. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol. Microbiol. 27:643–650.
  • Emter, R., Heese-Peck A., and Kralli A.. 2002. ERG6 and PDR5 regulate small lipophilic drug accumulation in yeast cells via distinct mechanisms. FEBS Lett. 521:57–61.
  • Fahrenkrog, B., Sauder U., and Aebi U.. 2004. The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis. J. Cell Sci. 117:115–126.
  • Flick, K. M., Spielewoy N., Kalashnikova T. I., Guaderrama M., Zhu Q., Chang H. C., and Wittenberg C.. 2003. Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters. Mol. Biol. Cell 14:3230–3241.
  • Forsberg, H., and Ljungdahl P. O.. 2001. Genetic and biochemical analysis of the yeast plasma membrane Ssy1p-Ptr3p-Ssy5p sensor of extracellular amino acids. Mol. Cell. Biol. 21:814–826.
  • Forsberg, H., and Ljungdahl P. O.. 2001. Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr. Genet. 40:91–109.
  • Gaber, R. F., Ottow K., Andersen H. A., and Kielland-Brandt M. C.. 2003. Constitutive and hyperresponsive signaling by mutant forms of Saccharomyces cerevisiae amino acid sensor Ssy1. Eukaryot. Cell 2:922–929.
  • Gietz, D., St. Jean A., Woods R. A., and Schiestl R. H.. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20:1425.
  • Gough, J., and Chothia C.. 2002. SUPERFAMILY: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res. 30:268–272.
  • Hein, C., Springael J. Y., Volland C., Haguenauer-Tsapis R., and André B.. 1995. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol. Microbiol. 18:77–87.
  • Hicke, L., Zanolari B., and Riezman H.. 1998. Cytoplasmic tail phosphorylation of the alpha-factor receptor is required for its ubiquitination and internalization. J. Cell Biol. 141:349–358.
  • Hoppe, T., Matuschewski K., Rape M., Schlenker S., Ulrich H. D., and Jentsch S.. 2000. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102:577–586.
  • Iraqui, I., Vissers S., Bernard F., De Craene J. O., Boles E., Urrestarazu A., and André B.. 1999. Amino acid signaling in Saccharomyces cerevisiae: a permease-like sensor of external amino acids and F-Box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol. Cell. Biol. 19:989–1001.
  • Jaquenoud, M., Gulli M. P., Peter K., and Peter M.. 1998. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex. EMBO J. 17:5360–5373.
  • Jorgensen, M. U., Bruun M. B., Didion T., and Kielland-Brandt M. C.. 1998. Mutations in five loci affecting GAP1-independent uptake of neutral amino acids in yeast. Yeast 14:103–114.
  • Jorgensen, M. U., Gjermansen C., Andersen H. A., and Kielland-Brandt M. C.. 1997. STP1, a gene involved in pre-tRNA processing in yeast, is important for amino-acid uptake and transcription of the permease gene BAP2. Curr. Genet. 31:241–247.
  • Klasson, H., Fink G. R., and Ljungdahl P. O.. 1999. Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol. Cell. Biol. 19:5405–5416.
  • Lee, D. H., and Goldberg A. L.. 1998. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 8:397–403.
  • Li, F. N., and Johnston M.. 1997. Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin proteolysis machinery through Skp1: coupling glucose sensing to gene expression and the cell cycle. EMBO J. 16:5629–5638.
  • Lipford, J. R., and Deshaies R. J.. 2003. Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nat. Cell Biol. 5:845–850.
  • Lipinska, B., Zylicz M., and Georgopoulos C.. 1990. The HtrA (DegP) protein, essential for Escherichia coli survival at high temperatures, is an endopeptidase. J. Bacteriol. 172:1791–1797.
  • Lo, C. L., Ailey B., Hubbard T. J., Brenner S. E., Murzin A. G., and Chothia C.. 2000. SCOP: a structural classification of proteins database. Nucleic Acids Res. 28:257–259.
  • Lowry, O. H., Rosebrough N. J., Farr A. L., and Randall R. J.. 1951. Protein measurements with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
  • Marchal, C., Dupre S., and Urban-Grimal D.. 2002. Casein kinase I controls a late step in the endocytic trafficking of yeast uracil permease. J. Cell Sci. 115:217–226.
  • Marchal, C., Haguenauer-Tsapis R., and Urban-Grimal D.. 2000. Casein kinase I-dependent phosphorylation within a PEST sequence and ubiquitination at nearby lysines signal endocytosis of yeast uracil permease. J. Biol. Chem. 275:23608–23614.
  • Moriya, H., and Johnston M.. 2004. Glucose sensing and signaling in Saccharomyces cerevisiae through the Rgt2 glucose sensor and casein kinase I. Proc. Natl. Acad. Sci. USA 101:1572–1577.
  • Nielsen, P. S., van den H. B., Didion T., de Boer M., Jorgensen M., Planta R. J., Kielland-Brandt M. C., and Andersen H. A.. 2001. Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2. Mol. Gen. Genet. 264:613–622.
  • Panek, H. R., Stepp J. D., Engle H. M., Marks K. M., Tan P. K., Lemmon S. K., and Robinson L. C.. 1997. Suppressors of YCK-encoded yeast casein kinase 1 deficiency define the four subunits of a novel clathrin AP-like complex. EMBO J. 16:4194–4204.
  • Rape, M., and Jentsch S.. 2002. Taking a bite: proteasomal protein processing. Nat. Cell Biol. 4:E113–E116.
  • Rawlings, N. D., and Barrett A. J.. 1994. Families of serine peptidases. Methods Enzymol. 244:19–61.
  • Rawlings, N. D., Tolle D. P., and Barrett A. J.. 2004. MEROPS: the peptidase database. Nucleic Acids Res. 32:D160–D164.
  • Robinson, L. C., Menold M. M., Garrett S., and Culbertson M. R.. 1993. Casein kinase I-like protein kinases encoded by YCK1 and YCK2 are required for yeast morphogenesis. Mol. Cell. Biol. 13:2870–2881.
  • Roth, A. F., Feng Y., Chen L., and Davis N. G.. 2002. The yeast DHHC cysteine-rich domain protein Akr1p is a palmitoyl transferase. J. Cell Biol. 159:23–28.
  • Sambrook, J., Fritsch E. F., and Maniatis T.. 1997. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Schnell, J. D., and Hicke L.. 2003. Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J. Biol. Chem. 278:35857–35860.
  • Springael, J. Y., Galan J. M., Haguenauer-Tsapis R., and André B.. 1999. NH4+-induced down-regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. J. Cell Sci. 112:1375–1383.
  • Uetz, P., Giot L., Cagney G., Mansfield T. A., Judson R. S., Knight J. R., Lockshon D., Narayan V., Srinivasan M., Pochart P., Qureshi-Emili A., Li Y., Godwin B., Conover D., Kalbfleisch T., Vijayadamodar G., Yang M., Johnston M., Fields S., and Rothberg J. M.. 2000. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403:623–627.
  • Vancura, A., Sessler A., Leichus B., and Kuret J.. 1994. A prenylation motif is required for plasma membrane localization and biochemical function of casein kinase I in budding yeast. J. Biol. Chem. 269:19271–19278.
  • Wach, A. 1996. PCR synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast 12:259–265.
  • Willems, A. R., Lanker S., Patton E. E., Craig K. L., Nason T. F., Mathias N., Kobayashi R., Wittenberg C., and Tyers M.. 1996. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86:453–463.
  • Zdobnov, E. M., and Apweiler R.. 2001. InterProScan: an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.