12
Views
64
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Kinetochore Targeting of Fission Yeast Mad and Bub Proteins Is Essential for Spindle Checkpoint Function but Not for All Chromosome Segregation Roles of Bub1p

, , &
Pages 9786-9801 | Received 05 Apr 2004, Accepted 24 Aug 2004, Published online: 27 Mar 2023

REFERENCES

  • Abrieu, A., Magnaghi-Jaulin L., Kahana J. A., Peter M., Castro A., Vigneron S., Lorca T., Cleveland D. W., and Labbe J. C.. 2001. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 106:83–93.
  • Alfa, C., Fantes P., Hyams J., McLeod M., and Warbrick E.. 1993. Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Allshire, R. C., Nimmo E. R., Ekwall K., Javerzat J. P., and Cranston G.. 1995. Mutations derepressing silent centromeric domains in fission yeast disrupt chromosome segregation. Genes Dev. 9:218–233.
  • Babu, J. R., Jeganathan K. B., Baker D. J., Wu X., Kang-Decker N., and van Deursen J. M.. 2003. Rae1 is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J. Cell Biol. 160:341–353.
  • Bahler, J., Wu J. Q., Longtime M. S., Shah N. G., McKenzie III A., Steever A. B., Wach A., Philippsen P., and Pringle J. R.. 1998. Heterologous modules for efficient and versatile PCR-based gene targetting in Schizosaccharomyces pombe. Yeast 14:943–951.
  • Bernard, P., Hardwick K., and Javerzat J. P.. 1998. Fission yeast bub1 is a mitotic centromere protein essential for the spindle checkpoint and the preservation of correct ploidy through mitosis. J. Cell Biol. 143:1775–1787.
  • Bernard, P., Maure J. F., and Javerzat J. P.. 2001. Fission yeast Bub1 is essential in setting up the meiotic pattern of chromosome segregation. Nat. Cell Biol. 3:522–526.
  • Bernard, P., Maure J. F., Partridge J. F., Genier S., Javerzat J. P., and Allshire R. C.. 2001. Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–2542.
  • Brady, D. M., and Hardwick K. G.. 2000. Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr. Biol. 10:675–678.
  • Campbell, M. S., Chan G. K., and Yen T. J.. 2001. Mitotic checkpoint proteins HsMAD1 and HsMAD2 are associated with nuclear pore complexes in interphase. J. Cell Sci. 114:953–963.
  • Chen, R. H. 2004. Phosphorylation and activation of Bub1 on unattached chromosomes facilitate the spindle checkpoint. EMBO J. 23:3113–3121.
  • Cleveland, D. W., Mao Y., and Sullivan K. F.. 2003. Centromeres and kinetochores. From epigenetics to mitotic checkpoint signaling. Cell 112:407–421.
  • Ding, R., McDonald K. L., and McIntosh J. R.. 1993. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol. 120:141–151.
  • Fang, G., Yu H., and Kirschner M. W.. 1998. The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev. 12:1871–1883.
  • Fraschini, R., Beretta A., Lucchini G., and Piatti S.. 2001. Role of the kinetochore protein Ndc10 in mitotic checkpoint activation in Saccharomyces cerevisiae. Mol. Genet. Genomics 266:115–125.
  • Fraschini, R., Beretta A., Sironi L., Musacchio A., Lucchini G., and Piatti S.. 2001. Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J. 20:6648–6659.
  • Gardner, R. D., Poddar A., Yellman C., Tavormina P. A., Monteagudo M. C., and Burke D. J.. 2001. The spindle checkpoint of the yeast Saccharomyces cerevisiae requires kinetochore function and maps to the CBF3 domain. Genetics 157:1493–1502.
  • Gillett, E. S., Espelin C. W., and Sorger P. K.. 2004. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. J. Cell Biol. 164:535–546.
  • Hardwick, K. G., Johnston R. J., Smith D., and Murray A. W. M.. 2000. MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p and Mad2p. J. Cell Biol. 148:871–882.
  • Hardwick, K. G., and Murray A. W.. 1995. Mad1p, a phosphoprotein component of the spindle assembly checkpoint in budding yeast. J. Cell Biol. 131:709–720.
  • Hartwell, L. H., and Weinert T. A.. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.
  • He, X., Jones M. H., Winey M., and Sazer S.. 1998. Mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe. J. Cell Sci. 111:1635–1647.
  • He, X. W., Patterson T. E., and Sazer S.. 1997. The Schizosaccharomyces pombe spindle checkpoint protein mad2p blocks anaphase and genetically interacts with the anaphase-promoting complex. Proc. Natl. Acad. Sci. USA 94:7965–7970.
  • Hiraoka, Y., Toda T., and Yanagida M.. 1984. The NDA3 gene of fission yeast encodes beta-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39:349–358.
  • Howell, B. J., Hoffman D. B., Fang G., Murray A. W., and Salmon E. D.. 2000. Visualization of Mad2 dynamics at kinetochores, along spindle fibers, and at spindle poles in living cells. J. Cell Biol. 150:1233–1249.
  • Howell, B. J., Moree B., Farrar E. M., Stewart S., Fang G., and Salmon E. D.. 2004. Spindle checkpoint protein dynamics at kinetochores in living cells. Curr. Biol. 14:953–964.
  • Hoyt, M. A., Totis L., and Roberts B. T.. 1991. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507–517.
  • Hwang, L. H., Lau L. F., Smith D. L., Mistrot C. A., Hardwick K. G., Hwang E. S., Amon A., and Murray A. W.. 1998. Budding yeast Cdc20: a target of the spindle checkpoint. Science 279:1041–1044.
  • Ikui, A. E., Furuya K., Yanagida M., and Matsumoto T.. 2002. Control of localization of a spindle checkpoint protein, Mad2, in fission yeast. J. Cell Sci. 115:1603–1610.
  • Iouk, T., Kerscher O., Scott R. J., Basrai M. A., and Wozniak R. W.. 2002. The yeast nuclear pore complex functionally interacts with components of the spindle assembly checkpoint. J. Cell Biol. 159:807–819.
  • Janke, C., Ortiz J., Lechner J., Shevchenko A., Magiera M. M., Schramm C., and Schiebel E.. 2001. The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. EMBO J. 20:777–791.
  • Johnson, V. L., Scott M. I. F., Holt S. V., Hussein D., and Taylor S. S.. 2004. Bub1 is required for kinetochore localization of BubRI, Cenp-E, Cenp-F and Mad2, and chromosome congression. J. Cell Sci. 117:1577–1589.
  • Karpen, G. H., and Allshire R. C.. 1997. The case for epigenetic effects on centromere identity and function. Trends Genet. 13:489–496.
  • Kim, S. H., Lin D. P., Matsumoto S., Kitazono A., and Matsumoto T.. 1998. Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279:1045–1047.
  • Kitajima, T. S., Kawashima S. A., and Watanabe Y.. 2004. The conserved kinetochore protein shugoshin protects centromeric cohesion during meiosis. Nature 427:510–517.
  • Li, R., and Murray A. W.. 1991. Feedback control of mitosis in budding yeast. Cell 66:519–531.
  • Li, X., and Nicklas R. B.. 1995. Mitotic forces control a cell-cycle checkpoint. Nature 373:630–632.
  • Luo, X., Tang Z., Rizo J., and Yu H.. 2002. The mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either mad1 or cdc20. Mol. Cell 9:59–71.
  • Martin-Lluesma, S., Stucke V. M., and Nigg E. A.. 2002. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297:2267–2270.
  • McCleland, M. L., Gardner R. D., Kallio M. J., Daum J. R., Gorbsky G. J., Burke D. J., and Stukenberg P. T.. 2003. The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes Dev. 17:101–114.
  • Millband, D. N., Campbell L., and Hardwick K. G.. 2002. The awesome power of multiple model systems: interpreting the complex nature of spindle checkpoint signalling. Trends Cell Biol. 12:205–209.
  • Millband, D. N., and Hardwick K. G.. 2002. Fission yeast Mad3p is required for Mad2p to inhibit the anaphase-promoting complex and localizes to kinetochores in a Bub1p-, Bub3p-, and Mph1p-dependent manner. Mol. Cell. Biol. 22:2728–2742.
  • Moreno, S., Klar A., and Nurse P.. 1991. Molecular genetic analysis of fission yeast, Schizosaccharomyces pombe. Methods Enzymol. 194:795–823.
  • Musacchio, A., and Hardwick K. G.. 2002. The spindle checkpoint: structural insights into dynamic signalling. Nat. Rev. Mol. Cell Biol. 3:731–741.
  • Nabeshima, K., Nakagawa T., Straight A. F., Murray A., Chikashige Y., Yamashita Y. M., Hiraoka Y., and Yanagida M.. 1998. Dynamics of centromeres during metaphase-anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle. Mol. Biol. Cell 9:3211–3225.
  • Oegema, K., Desai A., Rybina S., Kirkham M., and Hyman A. A.. 2001. Functional analysis of kinetochore assembly in Caenorhabditis elegans. J. Cell Biol. 153:1209–1226.
  • Partridge, J. F., Borgstrom B., and Allshire R. C.. 2000. Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev. 14:783–791.
  • Peters, J. M. 2002. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol. Cell 9:931–943.
  • Pidoux, A. L., and Allshire R. C.. 2000. Centromeres: getting a grip of chromosomes. Curr. Opin. Cell Biol. 12:308–319.
  • Pidoux, A. L., Richardson W., and Allshire R. C.. 2003. Sim4: a novel fission yeast kinetochore protein required for centromeric silencing and chromosome segregation. J. Cell Biol. 161:295–307.
  • Poddar, A., Daniel J. A., Daum J. R., and Burke D. J.. 2004. Differential kinetochore requirements for establishment and maintenance of the spindle checkpoint are dependent on the mechanism of checkpoint activation in Saccharomyces cerevisiae. Cell Cycle 3:197–204.
  • Rabitsch, K. P., Gregan J., Schleiffer A., Javerzat J. P., Eisenhaber F., and Nasmyth K.. 2004. Two fission yeast homologs of Drosophila Mei-S332 are required for chromosome segregation during meiosis I and II. Curr. Biol. 14:287–301.
  • Rieder, C. L., Cole R. W., Khodjakov A., and Sluder G.. 1995. The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J. Cell Biol. 130:941–948.
  • Shah, J. V., Botvinick E., Bonday Z., Furnari F., Berns M., and Cleveland D. W.. 2004. Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing. Curr. Biol. 14:942–952.
  • Sharp-Baker, H., and Chen R. H.. 2001. Spindle checkpoint protein Bub1 is required for kinetochore localization of Mad1, Mad2, Bub3, and CENP-E, independently of its kinase activity. J. Cell Biol. 153:1239–1249.
  • Sironi, L., Mapelli M., Knapp S., De Antoni A., Jeang K. T., and Musacchio A.. 2002. Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a “safety belt” binding mechanism for the spindle checkpoint. EMBO J. 21:2496–2506.
  • Sudakin, V., Chan G. K. T., and Yen T. J.. 2001. Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BubR1, Bub3, Cdc20, Mad2. J. Cell Biol. 154:925–936.
  • Takahashi, K., Chen E. S., and Yanagida M.. 2000. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288:2215–2219.
  • Tang, Z., Bharadwaj R., Li B., and Yu H.. 2001. Mad2-independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Dev. Cell 1:227–237.
  • Taylor, S. S., Ha E., and McKeon F.. 1998. The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J. Cell Biol. 142:1–11.
  • Tournier, S., Gachet Y., Buck V., Hyams J. S., and Millar J. B.. 2004. Disruption of astral microtubule contact with the cell cortex activates a Bub1, Bub3, and Mad3-dependent checkpoint in fission yeast. Mol. Biol. Cell 15:3345–3356.
  • Toyoda, Y., Furuya K., Goshima G., Nagao K., Takahashi K., and Yanagida M.. 2002. Requirement of chromatid cohesion proteins Rad21/Scc1 and Mis4/Scc2 for normal spindle-kinetochore interaction in fission yeast. Curr. Biol. 12:347–358.
  • Tunquist, B. J., Schwab M. S., Chen L. G., and Maller J. L.. 2002. The spindle checkpoint kinase bub1 and cyclin e/cdk2 both contribute to the establishment of meiotic metaphase arrest by cytostatic factor. Curr. Biol. 12:1027–1033.
  • Vanoosthuyse, V., and Hardwick K. G.. 2003. The complexity of Bub1 regulation—phosphorylation, phosphorylation, phosphorylation. Cell Cycle 2:118–119.
  • Wang, X., Babu J. R., Harden J. M., Jablonski S. A., Gazi M. H., Lingle W. L., de Groen P. C., Yen T. J., and van Deursen J. M. A.. 2001. The mitotic checkpoint protein hBUB3 and the mRNA export factor hRAE1 interact with GLEBS-containing proteins. J. Biol. Chem. 276:26559–26567.
  • Warren, C. D., Brady D. M., Johnston R. C., Hanna J. S., Hardwick K. G., and Spencer F. A.. 2002. Distinct chromosome segregation roles for spindle checkpoint proteins. Mol. Biol. Cell 13:3029–3041.
  • Weiss, E., and Winey M.. 1996. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint. J. Cell Biol. 132:111–123.
  • Wigge, P. A., and Kilmartin J. V.. 2001. The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J. Cell Biol. 152:349–360.
  • Yamaguchi, S., Decottignies A., and Nurse P.. 2003. Function of Cdc2p-dependent Bub1p phosphorylation and Bub1p kinase activity in the mitotic and meiotic spindle checkpoint. EMBO J. 22:1075–1087.
  • Yamamoto, A., and Hiraoka Y.. 2003. Monopolar spindle attachment of sister chromatids is ensured by two distinct mechanisms at the first meiotic division in fission yeast. EMBO J. 22:2284–2296.
  • Yoon, J. H., Love D. C., Guhathakurta A., Hanover J. A., and Dhar R.. 2000. Mex67p of Schizosaccharomyces pombe interacts with Rae1p in mediating mRNA export. Mol. Cell. Biol. 20:8767–8782.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.