156
Views
87
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Mechanism of B-Cell Receptor-Induced Phosphorylation and Activation of Phospholipase C-γ2

, , , &
Pages 9986-9999 | Received 24 Feb 2004, Accepted 17 Aug 2004, Published online: 27 Mar 2023

REFERENCES

  • Brazil, D. P., and Hemmings B. A.. 2001. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem. Sci. 26:657–664.
  • Brdicka, T., Imrich M., Angelisova P., Brdickova N., Horvath O., Spicka J., Hilgert I., Luskova P., Draber P., Novak P., Engels N., Wienands J., Simeoni L., Osterreicher J., Aguado E., Malissen M., Schraven B., and Horejsi V.. 2002. Non-T cell activation linker (NTAL): a transmembrane adaptor protein involved in immunoreceptor signaling. J. Exp. Med. 196:1617–1626.
  • Buhl, A. M., and Cambier J. C.. 1999. Phosphorylation of CD19 Y484 and Y515, and linked activation of phosphatidylinositol 3-kinase, are required for B cell antigen receptor-mediated activation of Bruton's tyrosine kinase. J. Immunol. 162:4438–4446.
  • Carpenter, G., and Ji Q.. 1999. Phospholipase C-γ as a signal-transducing element. Exp. Cell Res. 253:15–24.
  • Carter, R. H., Tuveson D. A., Park D. J., Rhee S. G., and Fearon D. T.. 1991. The CD19 complex of B lymphocytes. Activation of phospholipase C by a protein tyrosine kinase-dependent pathway that can be enhanced by the membrane IgM complex. J. Immunol. 147:3663–3671.
  • Chakrabarti, S., Brechling K., and Moss B.. 1985. Vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Mol. Cell. Biol. 5:3403–3409.
  • Chiu, C. W., Dalton M., Ishiai M., Kurosaki T., and Chan A. C.. 2002. BLNK: molecular scaffolding through 'cis'-mediated organization of signaling proteins. EMBO J. 21:6461–6472.
  • Clayton, E., Bandi G., Bell S. E., Chantry D., Downs C. P., Gray A., Humphries L. A., Rawlings D., Raynolds H., Vigorito E., and Turner M.. 2002. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196:753–763.
  • Dorsam, R. T., Kim S., Jin J., and Kunapuli S. P.. 2002. Coordinated signaling through both G12/13 and G(i) pathways is sufficient to activate GPIIb/IIIa in human platelets. J. Biol. Chem. 277:47588–47595.
  • Fluckiger, A.-C., Li Z., Kato R. M., Wahl M. I., Ochs H. D., Longnecker R., Kinet J.-P., Witte O. N., Scharenberg A. M., and Rawlings D. J.. 1998. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell receptor activation. EMBO J. 17:1973–1985.
  • Fruman, D. A., and Cantley L. C.. 2002. Phosphoinositide 3-kinase in immunological systems. Semin. Immunol. 14:7–18.
  • Fruman, D. A., Satterthwaite A. B., and Witte O. N.. 2000. Xid-like phenotypes: a B cell signalosome takes shape. Immunity 13:1–3.
  • Fujimoto, M., Poe J. C., Satterthwaite A. B., Wahl M. I., Witte O. N., and Tedder T. F.. 2002. Complementary roles for CD19 and Bruton's tyrosine kinase in B lymphocyte signal transduction. J. Immunol. 168:5465–5476.
  • Funamoto, S., Meili R., Lee S., Parry L., and Firtel R. A.. 2002. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109:611–623.
  • Haugh, J. M., Codazzi F., Teruel M., and Meyer T.. 2000. Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J. Cell Biol. 151:1269–1280.
  • Heinonen, J. E., Smith C. I., and Nore B. F.. 2002. Silencing of Bruton's tyrosine kinase (Btk) using short interfering RNA duplexes (siRNA). FEBS Lett. 527:274–278.
  • Huang, P. S., Davis L., Huber H., Goodhart P. J., Wegrzyn R. E., Oliff A., and Heimbrook D. C.. 1995. An SH3 domain is required for the mitogenic activity of microinjected phospholipase C-γ1. FEBS Lett. 358:287–292.
  • Iijima, M., and Devreotes P.. 2002. Tumor suppressor PTEN mediates sensing of chemoattractant gradients. Cell 109:599–610.
  • Irvin, B. J., Williams B. L., Nilson A. E., Maynor H. O., and Abraham R. T.. 2000. Pleiotropic contributions of phospholipase C-γ1 (PLC-γ1) to T-cell antigen receptor-mediated signaling: reconstitution studies of a PLC-γ1-deficient Jurkat T-cell line. Mol. Cell. Biol. 20:9149–9161.
  • Ishiai, M., Sugawara H., Kurosaki M., and Kurosaki T.. 1999. Association of phospholipase C-γ2 Src homology 2 domains with BLNK is critical for B cell antigen receptor signaling. J. Immunol. 163:1746–1749.
  • Janssen, E., Zhu M., Zhang W., Koonpaew S., and Zhang W.. 2003. LAB: a new membrane-associated adaptor molecule in B cell activation. Nat. Immunol. 4:117–123.
  • Ji, Q. S., Winnier G. E., Niswender K. D., Horstman D., Wisdom R., Magnuson M. A., and Carpenter G.. 1997. Essential role of the tyrosine kinase substrate phospholipase C-γ1 in mammalian growth and development. Proc. Natl. Acad. Sci. USA 94:2999–3003.
  • Jordan, M. S., Singer A. L., and Koretzky G. A.. 2003. Adaptors as central mediators of signal transduction in immune cells. Nat. Immunol. 4:110–116.
  • Jou, S.-T., Carpino N., Takahashi Y., Piekorz R., Chao J.-R., Carpino N., Wang D., and Ihle J. N.. 2002. Essential, nonredundant role for the phosphoinositide 3-kinase p110δ in signaling by the B-cell receptor complex. Mol. Cell. Biol. 22:8580–8591.
  • Kang, S. W., Wahl M. I., Chu J., Kitaura J., Kawakami Y., Kato R. M., Tabuchi R., Tarakhovsky A., Kawakami T., Turck C. W., Witte O. N., and Rawlings D. J.. 2001. PKCβ modulates antigen receptor signaling via regulation of Btk membrane localization. EMBO J. 20:5692–5702.
  • Klein, G., Giovanella B., Westman A., Stehlin J. S., and Mumford D.. 1975. An EBV-genome-negative cell line established from an American Burkitt lymphoma: receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology 5:319–334.
  • Kurosaki, T. 1997. Molecular mechanisms in B cell antigen receptor signaling. Curr. Opin. Immunol. 9:309–318.
  • Kurosaki, T., and Tsukada S.. 2000. BLNK: connecting Syk and Btk to calcium signals. Immunity 12:1–5.
  • Liao, F., Shin H. S., and Rhee S. G.. 1993. In vitro tyrosine phosphorylation of PLC-γ1 and PLC-γ2 by src-family protein tyrosine kinases. Biochem. Biophys. Res. Commun. 191:1028–1033.
  • Mahajan, S., Ghosh S., Sudbeck E. A., Zheng Y., Downs S., Hupke M., and Uckun F. M.. 1999. Rational design and synthesis of a novel anti-leukemic agent targeting Bruton's tyrosine kinase (BTK), LFM-A13 [α-cyano-β-hydroxy-β-methyl-N-(2, 5-dibromophenyl)propenamide]. J. Biol. Chem. 274:9587–9599.
  • Noh, D. Y., Shin S. H., and Rhee S. G.. 1995. Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim. Biophys. Acta 1242:99–113.
  • Okkenhaug, K., and Vanhaesebroeck B.. 2003. PI3K in lymphocyte development, differentiation and activation. Nat. Rev. Immunol. 3:317–330.
  • Patterson, R. L., van Rossum D. B., Ford D. L., Hurt K. J., Bae S. S., Suh P.-G., Kurosaki T., Snyder S. H., and Gill D. L.. 2002. Phospholipase C-γ is required for agonist-induced Ca2+ entry. Cell 111:529–541.
  • Rhee, S. G. 2001. Regulation of phosphoinositide-specific phospholipase C. Annu. Rev. Biochem. 70:281–312.
  • Rodriguez, R., Matsuda M., Perisic O., Bravo J., Paul A., Jones N. P., Light Y., Swann K., Williams R. L., and Katan M.. 2001. Tyrosine residues in phospholipase C γ2 essential for the enzyme function in B-cell signaling. J. Biol. Chem. 276:47982–47992.
  • Samelson, L. E. 2002. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20:371–394.
  • Scharenberg, A. M., El-Hillal O., Fruman D. A., Beitz L. O., Li Z., Lin S., Gout I., Cantley L. C., Rawlings D. J., and Kinet J. P.. 1998. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 17:1961–1972.
  • Scharenberg, A. M., and Kinet J. P.. 1998. PtdIns-3,4,5-P3: a regulatory nexus between tyrosine kinases and sustained calcium signals. Cell 94:5–8.
  • Sekiya, F., Poulin B., Kim Y. J., and Rhee S. G.. 2004. Mechanism of tyrosine phosphorylation and activation of phospholipase C-γ1: tyrosine-783 phosphorylation is not sufficient for lipase activation. J. Biol. Chem. 279:32181–32190.
  • Smith, M., Liu Y., Matthews N., Rhee S. G., Sung W., and Kung H.. 1994. Phospholipase C-γ1 can induce DNA synthesis by a mechanism independent of its lipase activity. Proc. Natl. Acad. Sci. USA 91:6554–6558.
  • Suh, P. G., Ryu S. H., Choi W. C., Lee K. Y., and Rhee S. G.. 1988. Monoclonal antibodies to three phospholipase C isozymes from bovine brain. J. Biol. Chem. 263:14497–14504.
  • Sun, T., Campbell M., Gordon W., and Arlinghaus R. B.. 2001. Preparation and application of antibodies to phosphoamino acid sequences. Biopolymers 60:61–75.
  • Suzuki, H., Matsuda S., Terauchi Y., Fujiwara M., Ohteki T., Asano T., Behrens T. W., Kouro T., Takatsu K., Kadowaki T., and Koyasu S.. 2003. PI3K and Btk differentially regulate B cell antigen receptor-mediated signal transduction. Nat. Immunol. 4:280–286.
  • Takata, M., and Kurosaki T.. 1996. A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-γ2. J. Exp. Med. 184:31–40.
  • Takata, M., Sabe H., Hata A., Inazu T., Homma Y., Nukada T., Yamamura H., and Kurosaki T.. 1994. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. EMBO J. 13:1341–1349.
  • Takesono, A., Finkelstein L. D., and Schwartzberg P. L.. 2002. Beyond calcium: new signaling pathways for Tec family kinases. J. Cell Sci. 115:3039–3048.
  • Tuveson, D. A., Carter R. H., Soltoff S. P., and Fearon D. T.. 1993. CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science 260:986–989.
  • Wang, D., Feng J., Wen R., Marine J. C., Sangster M. Y., Parganas E., Hoffmeyer A., Jackson C. W., Cleveland J. L., Murray P. J., and Ihle J. N.. 2000. Phospholipase C γ2 is essential in the functions of B cell and several Fc receptors. Immunity 13:25–35.
  • Watanabe, D., Hashimoto S., Ishiai M., Matsushita M., Baba Y., Kishimoto T., Kurosaki T., and Tsukada S.. 2001. Four tyrosine residues in phospholipase C-γ2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J. Biol. Chem. 276:38595–38601.
  • Wilde, J. I., and Watson S. P.. 2001. Regulation of phospholipase C γ isoforms in haematopoietic cells: why one, not the other? Cell. Signal. 13:691–701.
  • Xu, J., Wang F., Van Keymeulen A., Herzmark P., Straight A., Kelly K., Takuwa Y., Sugimoto N., Mitchison T., and Bourne H. R.. 2003. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114:201–214.
  • Yablonski, D., Kadlecek T., and Weiss A.. 2001. Identification of a phospholipase C-γ1 (PLC-γ1) SH3 domain-binding site in SLP-76 required for T-cell receptor-mediated activation of PLC-γ1 and NFAT. Mol. Cell. Biol. 21:4208–4218.
  • Yablonski, D., Kuhne M. R., Kadlecek T., and Weiss A.. 1998. Uncoupling of nonreceptor tyrosine kinases from PLC-γ1 in an SLP-76-deficient T cell. Science 281:413–416.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.