142
Views
488
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Translational Repression Mediates Activation of Nuclear Factor Kappa B by Phosphorylated Translation Initiation Factor 2

, , , , , , & show all
Pages 10161-10168 | Received 11 May 2004, Accepted 31 Aug 2004, Published online: 27 Mar 2023

REFERENCES

  • Baeuerle, P. A., and Baltimore D.. 1988. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242:540–546.
  • Bertolotti, A., Zhang Y., Hendershot L., Harding H., and Ron D.. 2000. Dynamic interaction of BiP and the ER stress transducers in the unfolded protein response. Nat. Cell Biol. 2:326–332.
  • Chen, J. 2000. Heme-regulated eIF2α kinase, p. 529–546. In Sonenberg N., Hershey J. W. B., and Mathews M. B. (ed.), Translational control of gene expression. CSHL Press, New York, N.Y.
  • Cheshire, J. L., Williams B. R., and Baldwin A. S., Jr. 1999. Involvement of double-stranded RNA-activated protein kinase in the synergistic activation of nuclear factor-kappaB by tumor necrosis factor-alpha and gamma-interferon in preneuronal cells. J. Biol. Chem. 274:4801–4806.
  • Cuervo, A. M., Hu W., Lim B., and Dice J. F.. 1998. IkappaB is a substrate for a selective pathway of lysosomal proteolysis. Mol. Biol. Cell 9:1995–2010.
  • Dever, T. E. 2002. Gene-specific regulation by general translation factors. Cell 108:545–556.
  • Dever, T. E., Feng L., Wek R. C., Cigan A. M., Donahue T. F., and Hinnebusch A. G.. 1992. Phosphorylation of initiation factor 2 alpha by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68:585–596.
  • Donze, O., Deng J., Curran J., Sladek R., Picard D., and Sonenberg N.. 2004. The protein kinase PKR: a molecular clock that sequentially activates survival and death programs. EMBO J. 23:564–571.
  • Gil, J., Rullas J., Garcia M. A., Alcami J., and Esteban M.. 2001. The catalytic activity of dsRNA-dependent protein kinase, PKR, is required for NF-kappaB activation. Oncogene 20:385–394.
  • Han, A. P., Yu C., Lu L., Fujiwara Y., Browne C., Chin G., Fleming M., Leboulch P., Orkin S. H., and Chen J. J.. 2001. Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J. 20:6909–6918.
  • Han, Y., Weinman S., Boldogh I., Walker R. K., and Brasier A. R.. 1999. Tumor necrosis factor-alpha-inducible IkappaBalpha proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-kappaB activation. J. Biol. Chem. 274:787–794.
  • Harding, H., Novoa I., Zhang Y., Zeng H., Wek R. C., Schapira M., and Ron D.. 2000. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6:1099–1108.
  • Harding, H., Zeng H., Zhang Y., Jungreis R., Chung P., Plesken H., Sabatini D., and Ron D.. 2001. Diabetes Mellitus and exocrine pancreatic dysfunction in Perk−/− mice reveals a role for translational control in survival of secretory cells. Mol. Cell 7:1153–1163.
  • Harding, H., Zhang Y., Bertolotti A., Zeng H., and Ron D.. 2000. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5:897–904.
  • Harding, H., Zhang Y., and Ron D.. 1999. Translation and protein folding are coupled by an endoplasmic reticulum resident kinase. Nature 397:271–274.
  • Harding, H., Zhang Y., Zeng H., Novoa I., Lu P., Calfon M., Sadri N., Yun C., Popko B., Paules R., Stojdl D., Bell J., Hettmann T., Leiden J., and Ron D.. 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell 11:619–633.
  • Harding, H. P., Calfon M., Urano F., Novoa I., and Ron D.. 2002. Transcriptional and translational control in the mammalian unfolded protein response. Annu. Rev. Cell Dev. Biol. 18:575–599.
  • Hershey, J. W. B., and Merrick W. C.. 2000. The pathway and mechanism of initiation of protein synthesis, p. 33–88. In Sonenberg N., Hershey J. W. B., and Mathews M. B. (ed.), Translational control of gene expression. CSHL Press, New York, N.Y.
  • Hinnebusch, A. 1996. Translational control of GCN4: gene-specific regulation by phosphorylation of eIF2, p. 199–244. In Hershey J., Mathews M., and Sonenberg N. (ed.), Translational control. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Hinnebusch, A. G. 2000. Mechanism and regulation of initiator methionyl-tRNA binding to ribosomes, p. 185–243. In Sonenberg N., Hershey J. W. B., and Mathews M. B. (ed.), Translational control of gene expression. CSHL Press, New York, N.Y.
  • Jiang, H. Y., Wek S. A., McGrath B. C., Scheuner D., Kaufman R. J., Cavener D. R., and Wek R. C.. 2003. Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol. Cell. Biol. 23:5651–5663.
  • Jousse, C., Oyadomari S., Novoa I., Lu P. D., Zhang Y., Harding H. P., and Ron D.. 2003. Inhibition of a constitutive translation initiation factor 2α phosphatase, CReP, promotes survival of stressed cells. J. Cell Biol. 163:767–775.
  • Kaufman, R. J. 2000. The double-stranded RNA-activated protein kinase PKR, p. 503–527. In Sonenberg N., Hershey J. W. B., and Mathews M. B. (ed.), Translational control of gene expression. CSHL Press, New York, N.Y.
  • Krappmann, D., and Scheidereit C.. 1997. Regulation of NF-kappa B activity by I kappa B alpha and I kappa B beta stability. Immunobiology 198:3–13.
  • Krappmann, D., Wulczyn F. G., and Scheidereit C.. 1996. Different mechanisms control signal-induced degradation and basal turnover of the NF-kappaB inhibitor IkappaB alpha in vivo. EMBO J. 15:6716–6726.
  • Kumar, A., Haque J., Lacoste J., Hiscott J., and Williams B. R.. 1994. Double-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B. Proc. Natl. Acad. Sci. USA 91:6288–6292.
  • Kumar, A., Yang Y. L., Flati V., Der S., Kadereit S., Deb A., Haque J., Reis L., Weissmann C., and Williams B. R.. 1997. Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. EMBO J. 16:406–416.
  • Lu, P. D., Jousse C., Marciniak S. J., Zhang Y., Novoa I., Scheuner D., Kaufman R. J., Ron D., and Harding H. P.. 2004. Cytoprotection by pre-emptive conditional phosphorylation of translation initiation factor 2. EMBO J. 23:169–179.
  • Ma, Y., and Hendershot L. M.. 2003. Delineation of a negative feedback regulatory loop that controls protein translation during endoplasmic reticulum stress. J. Biol. Chem. 278:34864–34873.
  • Novoa, I., Zeng H., Harding H., and Ron D.. 2001. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J. Cell Biol. 153:1011–1022.
  • Novoa, I., Zhang Y., Zeng H., Jungreis R., Harding H. P., and Ron D.. 2003. Stress-induced gene expression requires programmed recovery from translational repression. EMBO J. 22:1180–1187.
  • Pahl, H., and Baeuerle P.. 1995. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by the transcription factor NF-κB. EMBO J. 14:2580–2588.
  • Pando, M. P., and Verma I. M.. 2000. Signal-dependent and -independent degradation of free and NF-kappa B-bound IkappaBalpha. J. Biol. Chem. 275:21278–21286.
  • Prostko, C. R., Brostrom M. A., and Brostrom C. O.. 1993. Reversible phosphorylation of eukaryotic initiation factor 2 alpha in response to endoplasmic reticular signaling. Mol. Cell. Biochem. 127-128:255–265.
  • Prostko, C. R., Brostrom M. A., Malara E. M., and Brostrom C. O.. 1992. Phosphorylation of eukaryotic initiation factor (eIF) 2 alpha and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78. J. Biol. Chem. 267:16751–16754.
  • Ron, D., Brasier A. R., Wright K. A., Tate J. E., and Habener J. F.. 1990. An inducible 50-kilodalton NFkB-like protein and a constitutive protein both bind the acute-phase response element of the angiotensinogen gene. Mol. Cell. Biol. 10:1023–1032.
  • Ron, D., and Harding H.. 2000. PERK and translational control by stress in the endoplasmic reticulum, p. 547–560. In Hershey J., Mathews M., and Sonenberg N. (ed.), Translational control. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Rothwarf, D. M., and Karin M.. 1999. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci. STKE 1999:RE1.
  • Scheuner, D., Song B., McEwen E., Gillespie P., Saunders T., Bonner-Weir S., and Kaufman R. J.. 2001. Translational control is required for the unfolded protein response and in-vivo glucose homeostasis. Mol. Cell 7:1165–1176.
  • Scorsone, K. A., Panniers R., Rowlands A. G., and Henshaw E. C.. 1987. Phosphorylation of eukaryotic initiation factor 2 during physiological stresses which affect protein synthesis. J. Biol. Chem. 262:14538–14543.
  • Scott, M. L., Fujita T., Liou H. C., Nolan G. P., and Baltimore D.. 1993. The p65 subunit of NF-kappa B regulates I kappa B by two distinct mechanisms. Genes Dev. 7:1266–1276.
  • Sen, R., and Baltimore D.. 1986. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47:921–928.
  • Taddeo, B., Luo T. R., Zhang W., and Roizman B.. 2003. Activation of NF-kappaB in cells productively infected with HSV-1 depends on activated protein kinase R and plays no apparent role in blocking apoptosis. Proc. Natl. Acad. Sci. USA 100:12408–12413.
  • Tzamarias, D., Roussou I., and Thireos G.. 1989. Coupling of GCN4 mRNA translational activation with decreased rates of polypeptide chain initiation. Cell 57:947–954.
  • Ubeda, M., Wang X.-Z., Zinszner H., Wu I., Habener J., and Ron D.. 1996. Stress-induced binding of transcription factor CHOP to a novel DNA-control element. Mol. Cell. Biol. 16:1479–1489.
  • Wu, S., Tan M., Hu Y., Wang J. L., Scheuner D., and Kaufman R. J.. 2004. Ultraviolet light activates NFκB through translational inhibition of IκBα synthesis. J. Biol. Chem. 279:34898–34902.
  • Zamanian-Daryoush, M., Mogensen T. H., DiDonato J. A., and Williams B. R. G.. 2000. NF-κB activation by double-stranded-RNA-activated protein kinase (PKR) is mediated through NF-κB-inducing kinase and IκB kinase. Mol. Cell. Biol. 20:1278–1290.
  • Zhang, P., McGrath B., Li S., Frank A., Zambito F., Reinert J., Gannon M., Ma K., McNaughton K., and Cavener D. R.. 2002. The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol. Cell. Biol. 22:3864–3874.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.