28
Views
56
CrossRef citations to date
0
Altmetric
Cell Growth and Development

B-Cell Translocation Gene 2 (Btg2) Regulates Vertebral Patterning by Modulating Bone Morphogenetic Protein/Smad Signaling

, , , , , , , , , , & show all
Pages 10256-10262 | Received 29 Apr 2004, Accepted 01 Sep 2004, Published online: 27 Mar 2023

REFERENCES

  • Beppu, H., Kawabata M., Hamamoto T., Chytil A., Minowa O., Noda T., and Miyazono K.. 2000. BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev. Biol. 221:249–258.
  • Canzoniere, D., Farioli-Vecchioli S., Conti F., Ciotti M. T., Tata A. M., Augusti-Tocco G., Mattei E., Lakshmana M. K., Krizhanovsky V., Reeves S. A., Giovannoni R., Castano F., Servadio A., Ben-Arie N., and Tirone F.. 2004. Dual control of neurogenesis by PC3 through cell cycle inhibition and induction of Math1. J. Neurosci. 24:3355–3369.
  • Chen, C. R., Kang Y., Siegel P. M., and Massague J.. 2002. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110:19–32.
  • Chen, F., and Capecchi M. R.. 1997. Targeted mutations in hoxa-9 and hoxb-9 reveal synergistic interactions. Dev. Biol. 181:186–196.
  • Christ, B., Schmidt C., Huang R., Wilting J., and Brand-Saberi B.. 1998. Segmentation of the vertebrate body. Anat. Embryol. (Berlin) 197:1–8.
  • Corrente, G., Guardavaccaro D., and Tirone F.. 2002. PC3 potentiates NGF-induced differentiation and protects neurons from apoptosis. Neuroreport 13:417–422.
  • Cortes, U., Moyret-Lalle C., Falette N., Duriez C., Ghissassi F. E., Barnas C., Morel A. P., Hainaut P., Magaud J. P., and Puisieux A.. 2000. BTG gene expression in the p53-dependent and -independent cellular response to DNA damage. Mol. Carcinog. 27:57–64.
  • el Ghissassi, F., Valsesia-Wittmann S., Falette N., Duriez C., Walden P. D., and Puisieux A.. 2002. BTG2(TIS21/PC3) induces neuronal differentiation and prevents apoptosis of terminally differentiated PC12 cells. Oncogene 21:6772–6778.
  • Ficazzola, M. A., Fraiman M., Gitlin J., Woo K., Melamed J., Rubin M. A., and Walden P. D.. 2001. Antiproliferative B cell translocation gene 2 protein is down-regulated post-transcriptionally as an early event in prostate carcinogenesis. Carcinogenesis 22:1271–1279.
  • Fletcher, B. S., Lim R. W., Varnum B. C., Kujubu D. A., Koski R. A., and Herschman H. R.. 1991. Structure and expression of TIS21, a primary response gene induced by growth factors and tumor promoters. J. Biol. Chem. 266:14511–14518.
  • Guan, H., Smirnov D. A., and Ricciardi R. P.. 2003. Identification of genes associated with adenovirus 12 tumorigenesis by microarray. Virology 309:114–124.
  • Guardavaccaro, D., Corrente G., Covone F., Micheli L., D'Agnano I., Starace G., Caruso M., and Tirone F.. 2000. Arrest of G1-S progression by the p53-inducible gene PC3 is Rb dependent and relies on the inhibition of cyclin D1 transcription. Mol. Cell. Biol. 20:1797–1815.
  • Iacopetti, P., Michelini M., Stuckmann I., Oback B., Aaku-Saraste E., and Huttner W. B.. 1999. Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. Proc. Natl. Acad. Sci. USA 96:4639–4644.
  • Kannan, K., Amariglio N., Rechavi G., Jakob-Hirsch J., Kela I., Kaminski N., Getz G., Domany E., and Givol D.. 2001. DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene 20:2225–2234.
  • Korchynskyi, O., and ten Dijke P.. 2002. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J. Biol. Chem. 277:4883–4891.
  • Labbe, E., Silvestri C., Hoodless P. A., Wrana J. L., and Attisano L.. 1998. Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol. Cell 2:109–120.
  • Lim, I. K., Lee M. S., Ryu M. S., Park T. J., Fujiki H., Eguchi H., and Paik W. K.. 1998. Induction of growth inhibition of 293 cells by downregulation of the cyclin E and cyclin-dependent kinase 4 proteins due to overexpression of TIS21. Mol. Carcinog. 23:25–35.
  • Lin, W. J., Gary J. D., Yang M. C., Clarke S., and Herschman H. R.. 1996. The mammalian immediate-early TIS21 protein and the leukemia-associated BTG1 protein interact with a protein-arginine N-methyltransferase. J. Biol. Chem. 271:15034–15044.
  • Matsuda, S., Rouault J., Magaud J., and Berthet C.. 2001. In search of a function for the TIS21/PC3/BTG1/TOB family. FEBS Lett. 497:67–72.
  • McPherron, A. C., Lawler A. M., and Lee S. J.. 1999. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat. Genet. 22:260–264.
  • Melamed, J., Kernizan S., and Walden P. D.. 2002. Expression of B-cell translocation gene 2 protein in normal human tissues. Tissue Cell 34:28–32.
  • Morel, A. P., Sentis S., Bianchin C., Le Romancer M., Jonard L., Rostan M. C., Rimokh R., and Corbo L.. 2003. BTG2 antiproliferative protein interacts with the human CCR4 complex existing in vivo in three cell-cycle-regulated forms. J. Cell Sci. 116:2929–2936.
  • Nowicki, J. L., and Burke A. C.. 2000. Hox genes and morphological identity: axial versus lateral patterning in the vertebrate mesoderm. Development 127:4265–4275.
  • Oh, S. P., and Li E.. 1997. The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes Dev. 11:1812–1826.
  • Oh, S. P., Yeo C. Y., Lee Y., Schrewe H., Whitman M., and Li E.. 2002. Activin type IIA and IIB receptors mediate Gdf11 signaling in axial vertebral patterning. Genes Dev. 16:2749–2754.
  • Packard, D. S., Jr. 1978. Chick somite determination: the role of factors in young somites and the segmental plate. J. Exp. Zool. 203:295–306.
  • Pourquie, O. 2001. Vertebrate somitogenesis. Annu. Rev. Cell Dev. Biol. 17:311–350.
  • Prevot, D., Morel A. P., Voeltzel T., Rostan M. C., Rimokh R., Magaud J. P., and Corbo L.. 2001. Relationships of the antiproliferative proteins BTG1 and BTG2 with CAF1, the human homolog of a component of the yeast CCR4 transcriptional complex: involvement in estrogen receptor alpha signaling pathway. J. Biol. Chem. 276:9640–9648.
  • Prevot, D., Voeltzel T., Birot A. M., Morel A. P., Rostan M. C., Magaud J. P., and Corbo L.. 2000. The leukemia-associated protein Btg1 and the p53-regulated protein Btg2 interact with the homeoprotein Hoxb9 and enhance its transcriptional activation. J. Biol. Chem. 275:147–153.
  • Raouf, A., and Seth A.. 2002. Discovery of osteoblast-associated genes using cDNA microarrays. Bone 30:463–471.
  • Rouault, J. P., Falette N., Guehenneux F., Guillot C., Rimokh R., Wang Q., Berthet C., Moyret-Lalle C., Savatier P., Pain B., Shaw P., Berger R., Samarut J., Magaud J. P., Ozturk M., Samarut C., and Puisieux A.. 1996. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat. Genet. 14:482–486.
  • Rouault, J. P., Prevot D., Berthet C., Birot A. M., Billaud M., Magaud J. P., and Corbo L.. 1998. Interaction of BTG1 and p53-regulated BTG2 gene products with mCaf1, the murine homolog of a component of the yeast CCR4 transcriptional regulatory complex. J. Biol. Chem. 273:22563–22569.
  • Schumacher, A., and Magnuson T.. 1997. Murine Polycomb- and trithorax-group genes regulate homeotic pathways and beyond. Trends Genet. 13:167–170.
  • Storre, J., Elsasser H. P., Fuchs M., Ullmann D., Livingston D. M., and Gaubatz S.. 2002. Homeotic transformations of the axial skeleton that accompany a targeted deletion of E2f6. EMBO Rep. 3:695–700.
  • Struckmann, K., Schraml P., Simon R., Elmenhorst K., Mirlacher M., Kononen J., and Moch H.. 2004. Impaired expression of the cell cycle regulator BTG2 is common in clear cell renal cell carcinoma. Cancer Res. 64:1632–1638.
  • Tirone, F. 2001. The gene PC3(TIS21/BTG2), prototype member of the PC3/BTG/TOB family: regulator in control of cell growth, differentiation, and DNA repair? J. Cell. Physiol. 187:155–165.
  • Trimarchi, J. M., Fairchild B., Wen J., and Lees J. A.. 2001. The E2F6 transcription factor is a component of the mammalian Bmi1-containing polycomb complex. Proc. Natl. Acad. Sci. USA 98:1519–1524.
  • Tybulewicz, V. L., Crawford C. E., Jackson P. K., Bronson R. T., and Mulligan R. C.. 1991. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65:1153–1163.
  • Wellik, D. M., and Capecchi M. R.. 2003. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301:363–367.
  • Wilkinson, D. G. 1992. In situ hybridization: a practical approach. Oxford University Press, London, United Kingdom.
  • Yoshida, Y., Nakamura T., Komoda M., Satoh H., Suzuki T., Tsuzuku J. K., Miyasaka T., Yoshida E. H., Umemori H., Kunisaki R. K., Tani K., Ishii S., Mori S., Suganuma M., Noda T., and Yamamoto T.. 2003. Mice lacking a transcriptional corepressor Tob are predisposed to cancer. Genes Dev. 17:1201–1206.
  • Yoshida, Y., Tanaka S., Umemori H., Minowa O., Usui M., Ikematsu N., Hosoda E., Imamura T., Kuno J., Yamashita T., Miyazono K., Noda M., Noda T., and Yamamoto T.. 2000. Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell 103:1085–1097.
  • Zawel, L., Dai J. L., Buckhaults P., Zhou S., Kinzler K. W., Vogelstein B., and Kern S. E.. 1998. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1:611–617.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.