34
Views
76
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Activation of the DNA Damage Checkpoint in Yeast Lacking the Histone Chaperone Anti-Silencing Function 1

, , , , &
Pages 10313-10327 | Received 03 Aug 2004, Accepted 02 Sep 2004, Published online: 27 Mar 2023

REFERENCES

  • Adkins, M. W., Howar S. R., and Tyler J. K.. 2004. Chromatin disassembly mediated by the histone chaperone Asf1 is essential for transcriptional activation of the yeast PHO5 and PHO8 genes. Mol. Cell 14:657–666.
  • Adkins, M. W., and Tyler J. K.. The histone chaperone Asf1p mediates global chromatin dissembly in vivo. J. Biol. Chem., in press.
  • Aguilera, A., Chavez S., and Malagon F.. 2000. Mitotic recombination in yeast: elements controlling its incidence. Yeast 16:731–754.
  • Alcasabas, A. A., Osborn A. J., Bachant J., Hu F., Werler P. J., Bousset K., Furuya K., Diffley J. F., Carr A. M., and Elledge S. J.. 2001. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat. Cell Biol. 3:958–965.
  • Bakkenist, C. J., and Kastan M. B.. 2003. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506.
  • Bennett, C. B., Lewis L. K., Karthikeyan G., Lobachev K. S., Jin Y. H., Sterling J. F., Snipe J. R., and Resnick M. A.. 2001. Genes required for ionizing radiation resistance in yeast. Nat. Genet. 29:426–434.
  • Cha, R. S., and Kleckner N.. 2002. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–606.
  • Cox, M. M., Goodman M. F., Kreuzer K. N., Sherratt D. J., Sandler S. J., and Marians K. J.. 2000. The importance of repairing stalled replication forks. Nature 404:37–41.
  • de la Torre-Ruiz, M. A., Green C. M., and Lowndes N. F.. 1998. RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation. EMBO J. 17:2687–2698.
  • Dong, Z., and Fasullo M.. 2003. Multiple recombination pathways for sister chromatid exchange in Saccharomyces cerevisiae: role of RAD1 and the RAD52 epistasis group genes. Nucleic Acids Res. 31:2576–2585.
  • Downs, J. A., Lowndes N. F., and Jackson S. P.. 2000. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004.
  • Emili, A., Schieltz D. M., Yates III J. R., and Hartwell L. H.. 2001. Dynamic interaction of DNA damage checkpoint protein Rad53 with chromatin assembly factor Asf1. Mol. Cell 7:13–20.
  • Fasullo, M., Koudelik J., AhChing P., Giallanza P., and Cera C.. 1999. Radiosensitive and mitotic recombination phenotypes of the Saccharomyces cerevisiae dun1 mutant defective in DNA damage-inducible gene expression. Genetics 152:909–919.
  • Fuertesa, M. A., Castillab J., Alonsoa C., and Perez J. M.. 2003. Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr. Med. Chem. 10:257–266.
  • Gilbert, C. S., Green C. M., and Lowndes N. F.. 2001. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell 8:129–136.
  • Gontijo, A. M., Green C. M., and Almouzni G.. 2003. Repairing DNA damage in chromatin. Biochimie 85:1133–1147.
  • Grenson, M., Mousset M., Wiame J. M., and Bechet J.. 1966. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. I. Evidence for a specific arginine-transporting system. Biochim. Biophys. Acta 127:325–338.
  • Gunjan, A., and Verreault A.. 2003. A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in Saccharomyces cerevisiae. Cell 115:537–549.
  • Guthrie, C. F., and Fink G. R.. 1991. Guide to yeast genetics and molecular biology, vol. 194. Academic Press, New York, N.Y.
  • Haber, J. E. 1998. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32:561–599.
  • Han, M., Chang M., Kim U. J., and Grunstein M.. 1987. Histone H2B repression causes cell-cycle-specific arrest in yeast: effects on chromosomal segregation, replication, and transcription. Cell 48:589–597.
  • Hoek, M., and Stillman B.. 2003. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc. Natl. Acad. Sci. USA 100:12183–12188.
  • Holstege, F. C., Jennings E. G., Wyrick J. J., Lee T. I., Hengartner C. J., Green M. R., Golub T. R., Lander E. S., and Young R. A.. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717–728.
  • Hryciw, T., Tang M., Fontanie T., and Xiao W.. 2002. MMS1 protects against replication-dependent DNA damage in Saccharomyces cerevisiae. Mol. Genet. Genomics 266:848–857.
  • Hu, F., Alcasabas A. A., and Elledge S. J.. 2001. Asf1 links Rad53 to control of chromatin assembly. Genes Dev. 15:1061–1066.
  • Katou, Y., Kanoh Y., Bando M., Noguchi H., Tanaka H., Ashikari T., Sugimoto K., and Shirahige K.. 2003. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1078–1083.
  • Kaufman, P. D., Kobayashi R., and Stillman B.. 1997. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 11:345–357.
  • Kondo, T., Wakayama T., Naiki T., Matsumoto K., and Sugimoto K.. 2001. Recruitment of Mec1 and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science 294:867–870.
  • Le, S., Davis C., Konopka J. B., and Sternglanz R.. 1997. Two new S-phase-specific genes from Saccharomyces cerevisiae. Yeast 13:1029–1042.
  • Lea, D. E., and Coulson C. A.. 1948. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49:264–268.
  • Lew, D. J., and Burke D. J.. 2003. The spindle assembly and spindle position checkpoints. Annu. Rev. Genet. 37:251–282.
  • Lisby, M., Antunez de Mayolo A., Mortensen U. H., and Rothstein R.. 2003. Cell cycle-regulated centers of DNA double-strand break repair. Cell Cycle 2:479–483.
  • Lisby, M., Mortensen U. H., and Rothstein R.. 2003. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat. Cell Biol. 5:572–577.
  • Longtine, M. S., McKenzie III A., Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., and Pringle J. R.. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • Luger, K., Mader A. W., Richmond R. K., Sargent D. F., and Richmond T. J.. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260.
  • Marsischky, G. T., Filosi N., Kane M. F., and Kolodner R.. 1996. Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev. 10:407–420.
  • McNairn, A. J., and Gilbert D. M.. 2003. Epigenomic replication: linking epigenetics to DNA replication. Bioessays 25:647–656.
  • Megee, P. C., and Koshland D.. 1999. A functional assay for centromere-associated sister chromatid cohesion. Science 285:254–257.
  • Mello, J. A., Sillje H. H., Roche D. M., Kirschner D. B., Nigg E. A., and Almouzni G.. 2002. Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep. 3:329–334.
  • Melo, J. A., Cohen J., and Toczyski D. P.. 2001. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15:2809–2821.
  • Modesti, M., and Kanaar R.. 2001. DNA repair: spot(light)s on chromatin. Curr. Biol. 11:R229–R232.
  • Myung, K., Pennaneach V., Kats E. S., and Kolodner R. D.. 2003. Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc. Natl. Acad. Sci. USA 100:6640–6645.
  • Narlikar, G. J., Fan H. Y., and Kingston R. E.. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487.
  • Osborn, A. J., and Elledge S. J.. 2003. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev. 17:1755–1767.
  • Pasero, P., Shimada K., and Duncker B. P.. 2003. Multiple roles of replication forks in S phase checkpoints: sensors, effectors and targets. Cell Cycle 2:568–572.
  • Prado, F., Cortes-Ledesma F., and Aguilera A.. 2004. The absence of the yeast chromatin assembly factor Asf1 increases genomic instability and sister chromatid exchange. EMBO Rep. 5:497–502.
  • Qin, S., and Parthun M. R.. 2002. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol. Cell. Biol. 22:8353–8365.
  • Roth, D. B., and Roth S. Y.. 2000. Unequal access: regulating V(D)J. recombination through chromatin remodeling. Cell 103:699–702.
  • Rouse, J., and Jackson S. P.. 2000. LCD1: an essential gene involved in checkpoint control and regulation of the MEC1 signalling pathway in Saccharomyces cerevisiae. EMBO J. 19:5801–5812.
  • Schwartz, J. L. 1989. Monofunctional alkylating agent-induced S-phase-dependent DNA damage. Mutat. Res. 216:111–118.
  • Sharp, J. A., Franco A. A., Osley M. A., and Kaufman P. D.. 2002. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in Saccharomyces cerevisiae. Genes Dev. 16:85–100.
  • Smith, S., and Stillman B.. 1989. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58:15–25.
  • Stone, E. M., and Pillus L.. 1996. Activation of an MAP kinase cascade leads to Sir3p hyperphosphorylation and strengthens transcriptional silencing. J. Cell Biol. 135:571–583.
  • Sugawara, N., Ivanov E. L., Fishman-Lobell J., Ray B. L., Wu X., and Haber J. E.. 1995. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature 373:84–86.
  • Sutton, A., Bucaria J., Osley M. A., and Sternglanz R.. 2001. Yeast asf1 protein is required for cell cycle regulation of histone gene transcription. Genetics 158:587–596.
  • Tagami, H., Ray-Gallet D., Almouzni G., and Nakatani Y.. 2004. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61.
  • Tong, A. H., Evangelista M., Parsons A. B., Xu H., Bader G. D., Page N., Robinson M., Raghibizadeh S., Hogue C. W., Bussey H., Andrews B., Tyers M., and Boone C.. 2001. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368.
  • Tong, A. H., Lesage G., Bader G. D., Ding H., Xu H., Xin X., Young J., Berriz G. F., Brost R. L., Chang M., Chen Y., Cheng X., Chua G., Friesen H., Goldberg D. S., Haynes J., Humphries C., He G., Hussein S., Ke L., Krogan N., Li Z., Levinson J. N., Lu H., Menard P., Munyana C., Parsons A. B., Ryan O., Tonikian R., Roberts T., Sdicu A. M., Shapiro J., Sheikh B., Suter B., Wong S. L., Zhang L. V., Zhu H., Burd C. G., Munro S., Sander C., Rine J., Greenblatt J., Peter M., Bretscher A., Bell G., Roth F. P., Brown G. W., Andrews B., Bussey H., and Boone C.. 2004. Global mapping of the yeast genetic interaction network. Science 303:808–813.
  • Turner, B. M. 2002. Cellular memory and the histone code. Cell 111:285–291.
  • Tyler, J. K., Adams C. R., Chen S. R., Kobayashi R., Kamakaka R. T., and Kadonaga J. T.. 1999. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature 402:555–560.
  • Tyler, J. K., Collins K. A., Prasad-Sinha J., Amiott E., Bulger M., Harte P. J., Kobayashi R., and Kadonaga J. T.. 2001. Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol. Biol. Cell 21:6574–6584.
  • Vogelauer, M., Rubbi L., Lucas I., Brewer B. J., and Grunstein M.. 2002. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10:1223–1233.
  • Weinert, T. A., Kiser G. L., and Hartwell L. H.. 1994. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8:652–665.
  • Wu, X., Moore J. K., and Haber J. E.. 1996. Mechanism of MAT alpha donor preference during mating-type switching of Saccharomyces cerevisiae. Mol. Cell. Biol. 16:657–668.
  • Ye, X., Franco A. A., Santos H., Nelson D. M., Kaufman P. D., and Adams P. D.. 2003. Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol. Cell 11:341–351.
  • Zegerman, P., and Diffley J. F.. 2003. Lessons in how to hold a fork. Nat. Struct. Biol. 10:778–779.
  • Zhao, X., Muller E. G., and Rothstein R.. 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2:329–340.
  • Zhou, B. B., and Elledge S. J.. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408:433–439.
  • Zou, H., and Rothstein R.. 1997. Holliday junctions accumulate in replication mutants via a RecA homolog-independent mechanism. Cell 90:87–96.
  • Zou, L., and Elledge S. J.. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.