15
Views
42
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Histone Fold Protein Dls1p Is Required for Isw2-Dependent Chromatin Remodeling In Vivo

, &
Pages 2605-2613 | Received 09 Oct 2003, Accepted 11 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Alen, C., Kent N. A., Jones H. S., O'Sullivan J., Aranda A., and Proudfoot N. J.. 2002. A role for chromatin remodeling in transcriptional termination by RNA polymerase II. Mol. Cell 10:1441–1452.
  • Araki, H., Hamatake R. K., Morrison A., Johnson A. L., Johnston L. H., and Sugino A.. 1991. Cloning DPB3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae. Nucleic Acids Res. 19:4867–4872.
  • Badenhorst, P., Voas M., Rebay I., and Wu C.. 2002. Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev. 16:3186–3198.
  • Becker, P. B., and Horz W.. 2002. ATP-dependent nucleosome remodeling. Annu. Rev. Biochem. 71:247–273.
  • Bochar, D. A., Savard J., Wang W., Lafleur D. W., Moore P., Cote J., and Shiekhattar R.. 2000. A family of chromatin remodeling factors related to Williams syndrome transcription factor. Proc. Natl. Acad. Sci. USA 97:1038–1043.
  • Bozhenok, L., Wade P. A., and Varga-Weisz P.. 2002. WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J. 21:2231–2241.
  • Collins, N., Poot R. A., Kukimoto I., Garcia-Jimenez C., Dellaire G., and Varga-Weisz P. D.. 2002. An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat. Genet. 32:627–632.
  • Corona, D. F., Clapier C. R., Becker P. B., and Tamkun J. W.. 2002. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep. 3:242–247.
  • Corona, D. F., Eberharter A., Budde A., Deuring R., Ferrari S., Varga-Weisz P., Wilm M., Tamkun J., and Becker P. B.. 2000. Two histone fold proteins, CHRAC-14 and CHRAC-16, are developmentally regulated subunits of chromatin accessibility complex (CHRAC). EMBO J. 19:3049–3059.
  • Demeret, C., Bocquet S., Lemaitre J. M., Francon P., and Mechali M.. 2002. Expression of ISWI and its binding to chromatin during the cell cycle and early development. J. Struct. Biol. 140:57–66.
  • Deuring, R., Fanti L., Armstrong J. A., Sarte M., Papoulas O., Prestel M., Daubresse G., Verardo M., Moseley S. L., Berloco M., Tsukiyama T., Wu C., Pimpinelli S., and Tamkun J. W.. 2000. The ISWI chromatin-remodeling protein is required for gene expression and the maintenance of higher order chromatin structure in vivo. Mol. Cell 5:355–365.
  • Dua, R., Edwards S., Levy D. L., and Campbell J. L.. 2000. Subunit interactions within the Saccharomyces cerevisiae DNA polymerase epsilon (pol epsilon) complex. Demonstration of a dimeric pol epsilon. J. Biol. Chem. 275:28816–28825.
  • Fazzio, T. G., Kooperberg C., Goldmark J. P., Neal C., Basom R., Delrow J., and Tsukiyama T.. 2001. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol. Cell. Biol. 21:6450–6460.
  • Fazzio, T. G., and Tsukiyama T.. 2003. Chromatin remodeling in vivo: evidence for a nucleosome sliding mechanism. Mol. Cell 12:1333–1340.
  • Gavin, A. C., Bosche M., Krause R., Grandi P., Marzioch M., Bauer A., Schultz J., Rick J. M., Michon A. M., Cruciat C. M., Remor M., Hofert C., Schelder M., Brajenovic M., Ruffner H., Merino A., Klein K., Hudak M., Dickson D., Rudi T., Gnau V., Bauch A., Bastuck S., Huhse B., Leutwein C., Heurtier M. A., Copley R. R., Edelmann A., Querfurth E., Rybin V., Drewes G., Raida M., Bouwmeester T., Bork P., Seraphin B., Kuster B., Neubauer G., and Superti-Furga G.. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147.
  • Gelbart, M. E., Rechsteiner T., Richmond T. J., and Tsukiyama T.. 2001. Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol. Cell. Biol. 21:2098–2106.
  • Goldmark, J. P., Fazzio T. G., Estep P. W., Church G. M., and Tsukiyama T.. 2000. The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103:423–433.
  • Guschin, D., Geiman T. M., Kikyo N., Tremethick D. J., Wolffe A. P., and Wade P. A.. 2000. Multiple ISWI ATPase complexes from Xenopus laevis. Functional conservation of an ACF/CHRAC homolog. J. Biol. Chem. 275:35248–35255.
  • Hakimi, M. A., Bochar D. A., Schmiesing J. A., Dong Y., Barak O. G., Speicher D. W., Yokomori K., and Shiekhattar R.. 2002. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature 418:994–998.
  • Iida, T., and Araki H.. 2004. Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol. Cell. Biol. 24:217–227.
  • Ito, T., Bulger M., Pazin M. J., Kobayashi R., and Kadonaga J. T.. 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145–155.
  • Ito, T., Levenstein M. E., Fyodorov D. V., Kutach A. K., Kobayashi R., and Kadonaga J. T.. 1999. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13:1529–1539.
  • Jenuwein, T., and Allis C. D.. 2001. Translating the histone code. Science 293:1074–1080.
  • Kadam, S., and Emerson B. M.. 2002. Mechanisms of chromatin assembly and transcription. Curr. Opin. Cell Biol. 14:262–268.
  • Kent, N. A., Karabetsou N., Politis P. K., and Mellor J.. 2001. In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. Genes Dev. 15:619–626.
  • Kikyo, N., Wade P. A., Guschin D., Ge H., and Wolffe A. P.. 2000. Active remodeling of somatic nuclei in egg cytoplasm by the nucleosomal ATPase ISWI. Science 289:2360–2362.
  • Knop, M., Siegers K., Pereira G., Zachariae W., Winsor B., Nasmyth K., and Schiebel E.. 1999. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15:963–972.
  • Li, Y., Pursell Z. F., and Linn S.. 2000. Identification and cloning of two histone fold motif-containing subunits of HeLa DNA polymerase epsilon. J. Biol. Chem. 275:23247–23252.
  • Longtine, M. S., McKenzie III A., Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., and Pringle J. R.. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • MacCallum, D. E., Losada A., Kobayashi R., and Hirano T.. 2002. ISWI remodeling complexes in Xenopus egg extracts: identification as major chromosomal components that are regulated by INCENP-aurora B. Mol. Biol. Cell 13:25–39.
  • Narlikar, G. J., Fan H. Y., and Kingston R. E.. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487.
  • Ohya, T., Maki S., Kawasaki Y., and Sugino A.. 2000. Structure and function of the fourth subunit (Dpb4p) of DNA polymerase epsilon in Saccharomyces cerevisiae. Nucleic Acids Res. 28:3846–3852.
  • Peterson, C. L. 2002. Chromatin remodeling enzymes: taming the machines. Third in review series on chromatin dynamics. EMBO Rep. 3:319–322.
  • Poot, R. A., Dellaire G., Hulsmann B. B., Grimaldi M. A., Corona D. F., Becker P. B., Bickmore W. A., and Varga-Weisz P. D.. 2000. HuCHRAC, a human ISWI chromatin remodelling complex, contains hACF1 and two novel histone-fold proteins. EMBO J. 19:3377–3387.
  • Ren, B., Robert F., Wyrick J. J., Aparicio O., Jennings E. G., Simon I., Zeitlinger J., Schreiber J., Hannett N., Kanin E., Volkert T. L., Wilson C. J., Bell S. P., and Young R. A.. 2000. Genome-wide location and function of DNA binding proteins. Science 290:2306–2309.
  • Rigaut, G., Shevchenko A., Rutz B., Wilm M., Mann M., and Seraphin B.. 1999. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17:1030–1032.
  • Roth, S. Y., Denu J. M., and Allis C. D.. 2001. Histone acetyltransferases. Annu. Rev. Biochem. 70:81–120.
  • Santoro, R., Li J., and Grummt I.. 2002. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat. Genet. 32:393–396.
  • Strohner, R., Nemeth A., Jansa P., Hofmann-Rohrer U., Santoro R., Langst G., and Grummt I.. 2001. NoRC—a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J. 20:4892–4900.
  • Sugiyama, M., and Nikawa J.. 2001. The Saccharomyces cerevisiae Isw2p-Itc1p complex represses INO1 expression and maintains cell morphology. J. Bacteriol. 183:4985–4993.
  • Tsukiyama, T., Daniel C., Tamkun J., and Wu C.. 1995. ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83:1021–1026.
  • Tsukiyama, T., Palmer J., Landel C. C., Shiloach J., and Wu C.. 1999. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev. 13:686–697.
  • Varga-Weisz, P. D., Wilm M., Bonte E., Dumas K., Mann M., and Becker P. B.. 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598–602.
  • Vary, J. C., Jr., Gangaraju V. K., Qin J., Landel C. C., Kooperberg C., Bartholomew B., and Tsukiyama T.. 2003. Yeast Isw1p forms two separable complexes in vivo. Mol. Cell. Biol. 23:80–91.
  • Vignali, M., Hassan A. H., Neely K. E., and Workman J. L.. 2000. ATP-dependent chromatin-remodeling complexes. Mol. Cell. Biol. 20:1899–1910.
  • Yasui, D., Miyano M., Cai S., Varga-Weisz P., and Kohwi-Shigematsu T.. 2002. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419:641–645.
  • Zhao, X., Muller E. G., and Rothstein R.. 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2:329–340.
  • Zhou, Y., Santoro R., and Grummt I.. 2002. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J. 21:4632–4640.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.