37
Views
49
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Cellular Senescence Requires CDK5 Repression of Rac1 Activity

, &
Pages 2808-2819 | Received 01 Aug 2003, Accepted 22 Dec 2003, Published online: 27 Mar 2023

REFERENCES

  • Alexander, K., and Hinds P. W.. 2001. Requirement for p27KIP1 in retinoblastoma protein-mediated senescence. Mol. Cell. Biol. 21:3616–3631.
  • Banerjee, M., Worth D., Prowse D. M., and Nikolic M.. 2002. Pak1 phosphorylation on t212 affects microtubules in cells undergoing mitosis. Curr. Biol. 12:1233–1239.
  • Bodnar, A. G., Ouellette M., Frolkis M., Holt S. E., Chiu C. P., Morin G. B., Harley C. B., Shay J. W., Lichtsteiner S., and Wright W. E.. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352.
  • Bringold, F., and Serrano M.. 2000. Tumor suppressors and oncogenes in cellular senescence. Exp. Gerontol. 35:317–329.
  • Brookes, S., Rowe J., Ruas M., Llanos S., Clark P. A., Lomax M., James M. C., Vatcheva R., Bates S., Vousden K. H., Parry D., Gruis N., Smit N., Bergman W., and Peters G.. 2002. INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. EMBO J. 21:2936–2945.
  • Campisi, J. 1996. Replicative senescence: an old lives' tale? Cell 84:497–500.
  • Chou, M. M., and Blenis J.. 1996. The 70 kDa S6 kinase complexes with and is activated by the Rho family G proteins Cdc42 and Rac1. Cell 85:573–583.
  • Collado, M., Medema R., Garcia-Cao I., Dubuisson M., Barradas M., Glassford J., Rivas C., Burgering B., Serrano M., and Lam E.. 2000. Inhibition of the phosphoinositide 3-kinase pathway induces a senescence-like arrest mediated by p27Kip1. J. Biol. Chem. 275:21960–21968.
  • Dai, C., and Enders G.. 2000. p16 INK4a can initiate an autonomous senescence program. Oncogene 19:1613–1622.
  • Dickson, M. A., Hahn W. C., Ino Y., Ronfard V., Wu J. Y., Weinberg R. A., Louis D. N., Li F. P., and Rheinwald J. G.. 2000. Human keratinocytes that express hTERT and also bypass a p16INK4a-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20:1436–1447.
  • Dimri, G. P., Itahana K., Acosta M., and Campisi J.. 2000. Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14ARF tumor suppressor. Mol. Cell. Biol. 20:273–285.
  • Dimri, G. P., Lee X., Basile G., Acosta M., Scott G., Roskelley C., Medrano E. E., Linskens M., Rubelj I., Pereira-Smith O., et al. 1995. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92:9363–9367.
  • Dulic, V., Beney G., Frebourg G., Drullinger L., and Stein G.. 2000. Uncoupling between phenotypic senescence and cell cycle arrest in aging p21-deficient fibroblasts. Mol. Cell. Biol 20:6741–6754.
  • Hall, A. 1998. Rho GTPases and the actin cytoskeleton. Science 279:509–514.
  • He, T. C., Zhou S., da Costa L. T., Yu J., Kinzler K. W., and Vogelstein B.. 1998. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95:2509–2514.
  • Hinds, P. W., Mittnacht S., Dulic V., Arnold A., Reed S. I., and Weinberg R. A.. 1992. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70:993–1006.
  • Hsueh, Y. P., Kim E., and Sheng M.. 1997. Disulfide-linked head-to-head multimerization in the mechanism of ion channel clustering by PSD-95. Neuron 18:803–814.
  • Kissil, J. L., Wilker E. W., Johnson K. C., Eckman M. S., Yaffe M. B., and Jacks T.. 2003. Merlin, the product of the Nf2 tumor suppressor gene, is an inhibitor of the p21-activated kinase, Pak1. Mol. Cell 12:841–849.
  • Kiyono, T., Foster S. A., Koop J. I., McDougall J. K., Galloway D. A., and Klingelhutz A. J.. 1998. Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396:84–88.
  • Kolquist, K. A., Ellisen L. W., Counter C. M., Meyerson M., Tan L. K., Weinberg R. A., Haber D. A., and Gerald W. L.. 1998. Expression of TERT in early premalignant lesions and a subset of cells in normal tissues. Nat. Genet. 19:182–186.
  • Lin, A. W., Barradas M., Stone J. C., van Aelst L., Serrano M., and Lowe S. W.. 1998. Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12:3008–3019.
  • Lundberg, A., Hahn W., Gupta P., and Weinberg R.. 2000. Genes involved in senescence and immortalization. Curr. Opin. Cell Biol. 12:705–709.
  • MacCioni, R. B. 2001. Cdk5. Eur. J. Biochem. 268:1517.
  • Meijer, L., Borgne A., Mulner O., Chong J. P., Blow J. J., Inagaki N., Inagaki M., Delcros J. G., and Moulinoux J. P.. 1997. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243:527–536.
  • Meyerson, M., Counter C. M., Eaton E. N., Ellisen L. W., Steiner P., Caddle S. D., Ziaugra L., Beijersbergen R. L., Davidoff M. J., Liu Q., Bacchetti S., Haber D. A., and Weinberg R. A.. 1997. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90:785–795.
  • Mittnacht, S., and Weinberg R. A.. 1991. G1/S phosphorylation of the retinoblastoma protein is associated with an altered affinity for the nuclear compartment. Cell 65:381–393.
  • Nikolic, M., Chou M. M., Lu W., Mayer B. J., and Tsai L. H.. 1998. The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature 395:194–198.
  • Nobes, C. D., and Hall A.. 1995. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62.
  • Olson, M. F., Ashworth A., and Hall A.. 1995. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science 269:1270–1272.
  • Opitz, O. G., Suliman Y., Hahn W. C., Harada H., Blum H. E., and Rustgi A. K.. 2001. Cyclin D1 overexpression and p53 inactivation immortalize primary oral keratinocytes by a telomerase-independent mechanism. J. Clin. Investig. 108:725–732.
  • Philpott, A., Porro E. B., Kirschner M. W., and Tsai L. H.. 1997. The role of cyclin-dependent kinase 5 and a novel regulatory subunit in regulating muscle differentiation and patterning. Genes Dev. 11:1409–1421.
  • Rashid, T., Banerjee M., and Nikolic M.. 2001. Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J. Biol. Chem. 276:49043–49052.
  • Ren, X. D., and Schwartz M. A.. 2000. Determination of GTP loading on Rho. Methods Enzymol. 325:264–272.
  • Rheinwald, J. G., Hahn W. C., Ramsey M. R., Wu J. Y., Guo Z., Tsao H., De Luca M., Catricala C., and O'Toole K. M.. 2002. A two-stage, p16INK4A- and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol. Cell. Biol. 22:5157–5172.
  • Ridley, A. J. 1999. Rho family proteins and regulation of the actin cytoskeleton. Prog. Mol. Subcell. Biol. 22:1–22.
  • Sahai, E., and Marshall C. J.. 2002. RHO-GTPases and cancer. Nat. Rev. Cancer 2:133–142.
  • Schmitt, C. A., Fridman J. S., Yang M., Lee S., Baranov E., Hoffman R. M., and Lowe S. W.. 2002. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109:335–346.
  • Serrano, M., Lin A. W., McCurrach M. E., Beach D., and Lowe S. W.. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602.
  • Sui, G., Soohoo C., Affar E. B., Gay F., Shi Y., Forrester W. C., and Shi Y.. 2002. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99:5515–5520.
  • Templeton, D. J., Park S. H., Lanier L., and Weinberg R. A.. 1991. Nonfunctional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc. Natl. Acad. Sci. USA 88:3033–3037.
  • Tiemann, F., and Hinds P. W.. 1998. Induction of DNA synthesis and apoptosis by regulated inactivation of a temperature-sensitive retinoblastoma protein. EMBO J. 17:1040–1052.
  • Tiemann, F., Musunuru K., and Hinds P. W.. 1997. In Swallow D. M. and Edwards Y. (ed.), Protein dysfunction in human genetic diseases, p. 163–185. BIOS Scientific Publishers, Oxford, United Kingdom.
  • Xu, H. J., Zhou Y., Ji W., Perng G. S., Kruzelock R., Kong C. T., Bast R. C., Mills G. B., Li J., and Hu S. X.. 1997. Reexpression of the retinoblastoma protein in tumor cells induces senescence and telomerase inhibition. Oncogene 15:2589–2596.
  • Yamamoto, M., Marui N., Sakai T., Morii N., Kozaki S., Ikai K., Imamura S., and Narumiya S.. 1993. ADP-ribosylation of the rhoA gene product by botulinum C3 exoenzyme causes Swiss 3T3 cells to accumulate in the G1 phase of the cell cycle. Oncogene 8:1449–1455.
  • Yang, H. S., and Hinds P. W.. 2003. Increased Ezrin expression and activation by CDK5 coincident with acquisition of the senescent phenotype. Mol. Cell 11:1163–1176.
  • Zhong, J. L., Banerjee M. D., and Nikolic M.. 2003. Pak1 and its T212 phosphorylated form accumulate in neurones and epithelial cells of the developing rodent. Dev. Dyn. 228:121–127.
  • Zhu, J., Woods D., McMahon M., and Bishop J. M.. 1998. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev. 12:2997–3007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.