24
Views
92
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Brn-2 Transcription Factor Links Activated BRAF to Melanoma Proliferation

, , , , &
Pages 2923-2931 | Received 04 Dec 2003, Accepted 02 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Angel, P., Imagawa M., Chiu R., Stein B., Imbra R. J., Rahmsdorf H. J., Jonat C., Herrlich P., and Karin M.. 1987. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49:729–739.
  • Bennett, D. C., Cooper P. J., Dexter T. J., Devlin L. M., Heasman J., and Nester B.. 1989. Cloned mouse melanocyte lines carrying the germline mutations albino and brown: complementation in culture. Development 105:379–385.
  • Bert, A. G., Burrows J., Hawwari A., Vadas M. A., and Cockerill P. N.. 2000. Reconstitution of T cell-specific transcription directed by composite NFAT/Oct elements. J. Immunol. 165:5646–5655.
  • Carreira, S., Dexter T. J., Yavuzer U., Easty D. J., and Goding C. R.. 1998. Brachyury-related transcription factor Tbx2 and repression of the melanocyte-specific TRP-1 promoter. Mol. Cell. Biol. 18:5099–5108.
  • Carreira, S., Liu B., and Goding C. R.. 2000. The gene encoding the T-box transcription factor Tbx2 is a target for the microphthalmia-associated transcription factor in melanocytes. J. Biol. Chem. 275:21920–21927.
  • Chin, L., Merlino G., and Depinho R. A.. 1998. Malignant melanoma: modern black plague and genetic black box. Genes Dev. 12:3467–3481.
  • Chin, L., Pomerantz J., and DePinho R. A.. 1998. The INK4a/ARF tumor suppressor: one gene—two products—two pathways. Trends Biochem. Sci. 23:2822–2834.
  • Chin, L., Pomerantz J., Polsky D., Jacobson M., Cohen C., Cordon C., C., Horner II J. W., and DePinho R. A.. 1997. Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev. 11:2822–2834.
  • Cohen, Y., Goldenberg-Cohen N., Parrella P., Chowers I., Merbs S. L., Pe'er J., and Sidransky D.. 2003. Lack of BRAF mutation in primary uveal melanoma. Investig. Ophthalmol. Vis. Sci. 44:2876–2878.
  • Cruz, F., 3rd, Rubin B. P., Wilson D., Town A., Schroeder A., Haley A., Bainbridge T., Heinrich M. C., and Corless C. L.. 2003. Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Res. 63:5761–5766.
  • Davies, H., Bignell G. R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M. J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B. A., Cooper C., Shipley J., Hargrave D., Pritchard-Jones K., Maitland N., Chenevix-Trench G., Riggins G. J., Bigner D. D., Palmieri G., Cossu A., Flanagan A., Nicholson A., Ho J. W., Leung S. Y., Yuen S. T., Weber B. L., Seigler H. F., Darrow T. L., Paterson H., Marais R., Marshall C. J., Wooster R., Stratton M. R., and Futreal P. A.. 2002. Mutations of the BRAF gene in human cancer. Nature 417:949–954.
  • Easty, D. J., and Bennett D. C.. 2000. Protein tyrosine kinases in malignant melanoma. Melanoma Res. 10:401–411.
  • Easty, D. J., Ganz S. E., Farr C. J., Lai C., Herlyn M., and Bennett D. C.. 1993. Novel and known protein tyrosine kinases and their abnormal expression in human melanoma. J. Investig. Dermatol. 101:679–684.
  • Edmunds, S. C., Cree I. A., Di Nicolantonio F., Hungerford J. L., Hurren J. S., and Kelsell D. P.. 2003. Absence of BRAF gene mutations in uveal melanomas in contrast to cutaneous melanomas. Br. J. Cancer 88:1403–1405.
  • Eisen, T., Easty D. J., Bennett D. C., and Goding C. R.. 1995. The POU domain transcription factor Brn-2: elevated expression in malignant melanoma and regulation of melanocyte-specific gene expression. Oncogene 11:2157–2164.
  • Fujii, H., and Hamada H.. 1993. A CNS-specific POU transcription factor, Brn-2, is required for establishing mammalian neural cell lineages. Neuron 11:1197–1206.
  • Goding, C. R. 2000. Mitf from neural crest to melanoma: signal transduction and transcription in the melanocyte lineage. Genes Dev. 14:1712–1728.
  • Goodall, J., Martinozzi S., Dexter T. J., Champeval D., Carreira S., Larue L., and Goding C. R.. 2004. Brn-2 expression controls melanoma proliferation and is directly regulated by β-catenin. Mol. Cell. Biol. 24:2916–2923.
  • Hagino-Yamagishi, K., Saijoh Y., Ikeda M., Ichikawa M., Minamikawa-Tachino R., and Hamada H.. 1997. Predominant expression of Brn-2 in the post-mitotic neurons of the developing mouse neocortex. Brain Res. 752:261–268.
  • Hara, Y., Rovescalli A. C., Kim Y., and Nirenberg M.. 1992. Structure and evoution of four POU domain genes expressed in mouse brain. Proc. Natl. Acad. Sci. USA 89:3280–3284.
  • Hsu, S. C., Galceran J., and Grosschedl R.. 1998. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with β-catenin. Mol. Cell. Biol. 18:4807–4818.
  • Li, P., He X., Gerrero M. R., Mok M., Aggarwal A., and Rosenfeld M. G.. 1993. Spacing and orientation of bipartite DNA-binding motifs as potential functional determinants for POU domain factors. Genes Dev. 7:2483–2496.
  • Liang, F., Schaufele F., and Gardner D. G.. 2000. Functional interaction of NF-Y and SP1 is required for type-A natriuretic peptide receptor gene transcription. J. Biol. Chem. 276:1515–1522.
  • Morgenstern, J. P., and Land H.. 1990. Advanced mammalian gene transfer:high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18:3587–3596.
  • Nakai, S., Kawano H., Yudate T., Nishi M., Kuno J., Nagate A., Jishage K.-i., Hamada H., Fujii H., Kawamura K., Shiba K., and Noda T.. 1995. The POU domain trnscription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. Genes Dev. 9:3109–3121.
  • Pollock, P. M., Harper U. L., Hansen K. S., Yudt L. M., Stark M., Robbins C. M., Moses T. Y., Hostetter G., Wagner U., Kakareka J., Salem G., Pohida T., Heenan P., Duray P., Kallioniemi O., Hayward N. K., Trent J. M., and Meltzer P. S.. 2003. High frequency of BRAF mutations in nevi. Nat. Genet. 33:19–20.
  • Rimoldi, D., Salvi S., Lienard D., Lejeune F. J., Speiser D., Zografos L., and Cerottini J. C.. 2003. Lack of BRAF mutations in uveal melanoma. Cancer Res. 63:5712–5715.
  • Ryan, A. K., and Rosenfeld M. G.. 1997. POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev. 11:1207–1225.
  • Schonemann, M. D., Ryan A. K., McEvilly R. J., O'Connell S. M., Arias C. A., Kalla K. A., Li P., Sawchenko P. E., and Rosenfeld M. G.. 1995. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev. 9:3122–3155.
  • Schreiber, E., Himmelmann A., Malpiero U., Tobler A., Stahel R., and Fontana A.. 1992. Human small cell lung cancer expresses the octamer DNA-binding and nervous system-specific transcription factor N-Oct 3 (Brain-2). Cancer Res. 52:6121–6124.
  • Schreiber, E., Merchant R. E., Wiestler O. D., and Fontana A.. 1994. Primary brain tumors differ in their expression of octamer deoxyribonucleic acid-binding transcription factors from long-term cultured glioma cell lines. Neurosurgery 34:129–135.
  • Sturm, R. A., Bisshop F., Takahashi H., and Parsons P. G.. 1991. A melanoma octamer binding protein is responsive to differentiating agents. Cell Growth Differ. 2:519–524.
  • Sturm, R. A., O'Sullivan B. J., Thomson J. A., Jamshida N., Pedley J., and Parsons P. G.. 1994. Expression studies of pigmentation and POU-domain genes in human melanoma cells. Pigment Cell Res. 7:235–240.
  • Thomson, J. A., Murphy K., Baker E., Sutherland G. R., Parsons P. G., and Sturm R. A.. 1995. The brn-2 gene regulates the melanocytic phenotype and tumorigenic potential of human melanoma cells. Oncogene 11:690–700.
  • Wellbrock, C., and Schartl M.. 1999. Multiple binding sites in the growth factor receptor Xmrk mediate binding to p59fyn, GRB2 and Shc. Eur. J. Biochem. 260:275–283.
  • Wellbrock, C., Weisser C., Geissinger E., Troppmair J., and Schartl M.. 2002. Activation of p59(Fyn) leads to melanocyte dedifferentiation by influencing MKP-1-regulated mitogen-activated protein kinase signaling. J. Biol. Chem. 277:6443–6454.
  • Wittbrodt, J., Lammers R., Malitschek B., Ullrich A., and Schartl M.. 1992. The Xmrk receptor tyrosine kinase is activated in Xiphophorus malignant melanoma. EMBO J. 11:4239–4246.
  • Wu, M., Hemesath T. J., Takemoto C. M., Horstmann M. A., Wells A. G., Price E. R., Fisher D. Z., and Fisher D. E.. 2000. c-Kit triggers dual phosphorylations, which couple activation and degradation of the essential melanocyte factor Mi. Genes Dev. 14:301–312.
  • Xu, W., Gong L., Haddad M. M., Bischof O., Campisi J., Yeh E. T., and Medrano E. E.. 2000. Regulation of microphthalmia-associated transcription factor MITF protein levels by association with the ubiquitin-conjugating enzyme hUBC9. Exp. Cell Res. 255:135–143.
  • Yamada, K., Tanaka T., Miyamoto K., and Noguchi T.. 2000. Sp family members and nuclear factor-Y cooperatively stimulate transcription from the rat pyruvate kinase M gene distal promoter region via their direct interactions. J. Biol. Chem. 275:18129–18137.
  • Yavuzer, U., and Goding C. R.. 1994. Melanocyte-specific gene expression: role of repression and identification of a melanocyte-specific factor, MSF. Mol. Cell. Biol. 14:3494–3503.
  • Zheng, X. L., Matsubara S., Diao C., Hollenberg M. D., and Wong N. C.. 2001. Epidermal growth factor induction of apolipoprotein A-I is mediated by the Ras-MAP kinase cascade and Sp1. J. Biol. Chem. 276:13822–13829.
  • Zhong, Z. D., Hammani K., Bae W. S., and DeClerck Y. A.. 2000. NF-Y and Sp1 cooperate for the transcriptional activation and cAMP response of human tissue inhibitor of metalloproteinases-2. J. Biol. Chem. 275:18602–18610.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.