24
Views
40
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Inhibition of NF-κB Activity by IκBβ in Association with κB-Ras

, , , , &
Pages 3048-3056 | Received 03 Dec 2003, Accepted 06 Jan 2004, Published online: 27 Mar 2023

REFERENCES

  • Attar, R. M., Macdonald-Bravo H., Raventos-Suarez C., Durham S. K., and Bravo R.. 1998. Expression of constitutively active IκBβ in T cells of transgenic mice: persistent NF-κB activity is required for T-cell immune responses. Mol. Cell. Biol. 18:477–487.
  • Baldwin, A. S. 1996. The NF-kappaB and IkappaB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683.
  • Bitko, V., and Barik S.. 1998. Persistent activation of RelA by respiratory syncytial virus involves protein kinase C, underphosphorylated IκBβ, and sequestration of protein phosphatase 2A by the viral phosphoprotein. J. Virol. 72:5610–5618.
  • Blackwell, T. S., Stecenko A. A., and Christman J. W.. 2001. Dysregulated NF-kappaB activation in cystic fibrosis: evidence for a primary inflammatory disorder. Am. J. Physiol. 281:L69–L70.
  • Boguski, M. S., and McCormick F.. 1993. Proteins regulating ras and its relatives. Nature 366:643–654.
  • Bourne, H. R., Sanders D. A., and McCormick F.. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132.
  • Brummelkamp, T. R., Bernards R., and Agami R.. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553.
  • Chen, Y., Wu J., and Ghosh G.. 2003. κB-Ras binds to the unique insert within the ankyrin repeat domain of Ikappa Bbeta and regulates cytoplasmic retention of Ikappa Bbeta/NF-kappa B complexes. J. Biol. Chem. 278:23101–23106.
  • Claudio, E., Brown K., Park S., Wang H., and Siebenlist U.. 2002. BAFF-induced NEMO-independent processing of NF-kB2 in maturing B cells. Nat. Immunol. 3:958–965.
  • DeLuca, C., Petropoulos L., Zmeureanu D., and Hiscott J.. 1999. Nuclear IkappaBbeta maintains persistent NF-kappaB activation in HIV-1-infected myeloid cells. J. Biol. Chem. 274:13010–13016.
  • Elbashir, S. M., Harborth J., Lendeckel W., Yalcin A., Weber K., and Tuschl T.. 2001. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498.
  • Elbashir, S. M., Lendeckel W., and Tuschl T.. 2001. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15:188–200.
  • Erdman, R. A., Shellenberger K. E., Overmeyer J. H., and Maltese W. A.. 2000. Rab24 is an atypical member of the Rab GTPase family: deficient GTPase activity, GDP dissociation inhibitor interaction, and prenylation of Rab24 expressed in cultured cells. J. Biol. Chem. 275:3848–3856.
  • Fenwick, C., Na S.-Y., Voll R. E., Zhong H., Im S.-Y., Lee J. W., and Ghosh S.. 2000. A subclass of Ras proteins that regulate the degradation of IkappaB. Science 287:869–873.
  • Geisler, R., Bergmann A., Hiromi Y., and Nuesslein-Volhard C.. 1992. cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the IkappaB gene family of vertebrates. Cell 71:613–621.
  • Ghosh, S., and Karin M.. 2002. Missing pieces in the NF-kappaB puzzle. Cell 109:S81–S96.
  • Ghosh, S., May M. J., and Kopp E. B.. 1998. NF-kappaB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16:225–260.
  • Harhaj, E. W., Maggirwar S. B., Good L., and Sun S.-C.. 1996. CD28 mediates a potent costimulatory signal for rapid degradation of IκBβ which is associated with accelerated activation of various NF-κB/Rel heterodimers. Mol. Cell. Biol. 16:6736–6743.
  • Hiscott, J., Kwon H., and Genin P.. 2001. Hostile takeovers: viral appropriation of the NF-kappaB pathway. J. Clin. Investig. 107:143–151.
  • Huxford, T., Malek S., and Ghosh G.. 2000. Preparation and crystallization of dynamic NF-kappa B · IkappaB complexes. J. Biol. Chem. 275:32800–32806.
  • John, J., Sohmen R., Feuerstein J., Linke R., Wittinghofer A., and Goody R. S.. 1990. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry 29:6058–6065.
  • Johnson, D. R., Douglas I., Jahnke A., Ghosh S., and Pober J. S.. 1996. A sustained reduction in I-kappa-B-beta may contribute to persistent NF-kappa-B activation in human endothelial cells. J. Biol. Chem. 271:16317–16322.
  • Karin, M., and Ben-Neriah Y.. 2000. Phosphorylation meets ubiquitination: the control of NF-kappaB activity. Annu. Rev. Immunol. 18:621–663.
  • Kidd, S. 1992. Characterization of the Drosophila cactus locus and analysis of interactions between cactus and dorsal proteins. Cell 71:623–635.
  • Malek, S., Chen Y., Huxford T., and Ghosh G.. 2001. IkappaBbeta, but not IkappaBalpha, functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by masking both NF-kappaB nuclear localization sequences in resting cells. J. Biol. Chem. 276:45225–45235.
  • Malek, S., Huang D. B., Huxford T., Ghosh S., and Ghosh G.. 2003. X-ray crystal structure of an Ikappa Bbeta/NF-kappa B p65 homodimer complex. J. Biol. Chem. 278:23094–23100.
  • Montaner, S., Perona R., Saniger L., and Lacal J. C.. 1998. Multiple signalling pathways lead to the activation of the nuclear factor kappaB by the Rho family of GTPases. J. Biol. Chem. 273:12779–12785.
  • Nobes, C. D., Lauritzen I., Mattei M.-G., Paris S., Hall A., and Chardin P.. 1998. A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J. Cell Biol. 141:187–197.
  • Palmer, G. H., Machado J., Fernandez P., Heussler V., Perinat T., and Dobbelaere D. A. E.. 1997. Parasite-mediated nuclear factor kappaB regulation in lymphoproliferation caused by Theileria parva infection. Proc. Natl. Acad. Sci. USA 94:12527–12532.
  • Perona, R., Montaner S., Saniger L., Sanchez-Perez I., Bravo R., and Lacal J. C.. 1997. Activation of the nuclear factor-kappa-B by Rho, CDC42, and Rac-1 proteins. Genes Dev. 11:463–475.
  • Schmidt, C., Peng B., Li Z., Sclabas G. M., Fujioka S., Niu J., Schmidt-Supprian M., Evans D. B., Abbruzzese J. L., and Chiao P. J.. 2003. Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation. Mol. Cell 12:1287–1300.
  • Senftleben, U., Cao Y., Xiao G., Greten F. R., Krahn G., Bonizzi G., Chen Y., Hu Y., Fong A., Sun S.-C., and Karin M.. 2001. Activation by IKKalpha of a second, evolutionary conserved, NF-kappaB signaling pathway. Science 293:1495–1499.
  • Stecenko, A. A., King G., Torii K., Breyer R. M., Dworski R., Blackwell T. S., Christman J. W., and Brigham K. L.. 2001. Dysregulated cytokine production in human cystic fibrosis bronchial epithelial cells. Inflammation 25:145–155.
  • Tam, W. F., and Sen R.. 2001. IkappaB family members function by different mechanisms. J. Biol. Chem. 276:7701–7704.
  • Thompson, J. E., Phillips R. J., Erdjument-Bromage H., Tempst P., and Ghosh S.. 1995. I-kappa-B-beta regulates the persistent response in a biphasic activation of NF-kappa-B. Cell 80:573–582.
  • Tran, K., Merika M., and Thanos D.. 1997. Distinct functional properties of IκBα and IκBβ. Mol. Cell. Biol. 17:5386–5399.
  • Tucker, J., Sczakiel G., Feuerstein J., John J., Goody R. S., and Wittinghofer A.. 1986. Expression of p21 proteins in Escherichia coli and stereochemistry of the nucleotide-binding site. EMBO J. 5:1351–1358.
  • Verma, I. M., Stevenson K., Schwarz E. W., Van Antwerp D., and Miyamoto S.. 1995. Rel/NF-kappa-B/I-kappa-B family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735.
  • Vetter, I. R., and Wittinghofer A.. 2001. The guanine nucleotide-binding switch in three dimensions. Science 294:1299–1304.
  • Xiao, G., Harhaj E. W., and Sun S.-C.. 2001. NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol. Cell 7:401–409.
  • Zhou, X.-Y., Yashiro-Ohtani Y., Nakahira M., Park W. R., Abe R., Hamaoka T., Naramura M., Gu H., and Fujiwara H.. 2002. Molecular mechanism underlying differential contribution of CD28 versus non-CD28 costimulatory molecules to IL-2 promoter activation. J. Immunol. 168:3847–3854.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.