701
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Strategies to minimize CNS toxicity: in vitro high-throughput assays and computational modeling

, , &
Pages 531-542 | Published online: 29 Mar 2012

Bibliography

  • Azevedo FAC, Carvalho LRB, Grinberg LT, Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 2009;513(5):532-41
  • Hitchcock SA, Pennington LD. Structure-brain exposure relationships. J Med Chem 2006;49(26):7559-83
  • Abbott NJ, Patabendige AAK, Dolman DEM, Structure and function of the blood-brain barrier. Neurobiol Dis 2010;37(1):13-25
  • Easter A, Bell ME, Damewood JR Jr, Approaches to seizure risk assessment in preclinical drug discovery. Drug Discovery Today 2009;14(17-18):876-84
  • Nishioku T, Yamauchi A, Takata F, Disruption of the blood-brain barrier in collagen-induced arthritic mice. Neurosci Lett 2010;482(3):208-11
  • del Zoppo GJ, Hallenbeck JM. Advances in the vascular pathophysiology of ischemic stroke. Thromb Res 2000;98(3):73-81
  • Persidsky Y, Ramirez S, Haorah J, Kanmogne G. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 2006;1(3):223-36
  • Wardlaw JM, Sandercock PAG, Dennis MS, Starr J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 2003;34(3):806-12
  • Popescu BO, Toescu EC, Popescu LM, Blood-brain barrier alterations in ageing and dementia. J Neurol Sci 2009;283(1-2):99-106
  • Kooij G, van Horssen J, de Lange ECM, T lymphocytes impair P-glycoprotein function during neuroinflammation. J Autoimmun 2010;34(4):416-25
  • Ramirez SH, Potula R, Fan S, Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J Cereb Blood Flow Metab 2009;29(12):1933-45
  • Bauer B, Hartz AMS, Fricker G, Miller DS. Modulation of p-glycoprotein transport function at the blood-brain barrier. Exp Biol Med 2005;230(2):118-27
  • Greenwald ES. Organic mental changes with fluorouracil therapy. JAMA 1976;235(3):248-9
  • Han R, Yang Y, Dietrich J, Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. J Biol 2008;7(4):12
  • Wefel JS, Saleeba AK, Buzdar AU, Meyers CA. Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer 2010;116(14):3348-56
  • Choi SM, Lee SH, Yang YS, 5-Fluorouracil-induced leukoencephalopathy in patients with breast cancer. J Korean Med Sci 2001;16:328-34
  • Fluorouracil Roche. RxMed: Pharmaceutical information, 2011. Available from: http://www.rxmed.com/b.main/b2.pharmaceutical/b2.1.monographs/CPS-%20Monographs/CPS-%20(General%20Monographs-%20F)/FLUOROURACIL%20ROCHE.html [Last accessed 13 January 2012]
  • Zuberbier T, Asero R, Bindslev-Jensen C, EAACI/GA²LEN/EDF/WAO guideline: management of urticaria. Allergy 2009;64(10):1427-43
  • Weller K, Ziege C, Staubach P, H1-antihistamine up-dosing in chronic spontaneous urticaria: patients' perspective of effectiveness and side effects - a retrospective survey study. PLoS One 2011;6(9):e23931
  • Cvetkovic M, Leake B, Fromm MF, OATP and p-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos 1999;27(8):866-71
  • Petri N, Tannergren C, Rungstad D, Lennernas H. Transport characteristics of fexofenadine in the Caco-2 cell model. Pharm Res 2004;21(8):1398-404
  • Zhao R, Kalvass JC, Yanni SB, Fexofenadine brain exposure and the influence of blood-brain barrier p-glycoprotein after fexofenadine and terfenadine administration. Drug Metab Dispos 2009;37(3):529-35
  • Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57(2):173-85
  • Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006;7(1):41-53
  • Neuwelt EA, Bauer B, Fahlke C, Engaging neuroscience to advance translational research in brain barrier biology. Nat Rev Neurosci 2011;12(3):169-82
  • Kalvass JC, Maurer TS. Influence of nonspecific brain and plasma binding on CNS exposure: implications for rational drug discovery. Biopharm Drug Dispos 2002;23(8):327-38
  • Doan KMM, Humphreys JE, Webster LO, Passive permeability and p-glycoprotein-mediated efflux differentiate Central Nervous System (CNS) and non-CNS marketed drugs. J Pharmacol Exp Ther 2002;303(3):1029-37
  • Di L, Kerns EH, Carter GT. Strategies to assess blood-brain barrier penetration. Expert Opin Drug Discov 2008;3(6):677-87
  • Hop CECA, Cole MJ, Davidson RE, High throughput ADME screening: practical considerations, impact on the portfolio and enabler of in silico ADME models. Curr Drug Metab 2008;9(9):847-53
  • Keefer CE, Chang G, Kauffman GW. Extraction of tacit knowledge from large ADME data sets via pairwise analysis. Bioorg Med Chem 2011;19(12):3739-49
  • Cole S, Bagal S, El-Kattan A, Full efficacy with no CNS side-effects: unachievable panacea or reality? DMPK considerations in design of drugs with limited brain penetration. Xenobiotica 2012;42(1):11-27
  • Deli MA, Abraham CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol 2005;25(1):59-127
  • Lippmann ES, Weidenfeller C, Svendsen CN, Shusta EV. Blood–brain barrier modeling with co-cultured neural progenitor cell-derived astrocytes and neurons. J Neurochem 2011;119(3):507-20
  • Cucullo L, Hossain M, Puvenna V, The role of shear stress in blood-brain barrier endothelial physiology. BMC Neurosci 2011;12(1):40
  • Caram-Salas N, Boileau E, Farrington GK, In vitro and in vivo methods for assessing FcRn-mediated reverse transcytosis cross the blood-brain barrier. Methods Mol Biol 2011;763:383-401
  • Hosoya K-I, Hori S, Ohtsuki S, Terasaki T. A new in vitro model for blood-cerebrospinal fluid barrier transport studies: an immortalized choroid plexus epithelial cell line derived from the tsA58 SV40 large T-antigen gene transgenic rat. Adv Drug Deliv Rev 2004;56(12):1875-85
  • Klas J, Wolburg H, Terasaki T, Characterization of immortalized choroid plexus epithelial cell lines for studies of transport processes across the blood-cerebrospinal fluid barrier. Cerebrospinal Fluid Res 2010;7(1):11
  • Balbuena P, Li W, Magnin-Bissel G, Comparison of two blood-brain barrier in vitro systems: cytotoxicity and transfer assessments of malathion/oxon and lead acetate. Toxicol Sci 2010;114(2):260-71
  • Trickler WJ, Lantz SM, Murdock RC, Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 2010;118(1):160-70
  • Mente SR, Lombardo F. A recursive-partitioning model for blood–brain barrier permeation. J Comput Aided Mol Des 2005;19(7):465-81
  • Adenot M, Lahana R. Blood-brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including p-glycoprotein substrates. J Chem Inf Comput Sci 2004;44:239-48
  • Lobell M, Molnar L, Keseru GM. Recent advances in the prediction of blood-brain partitioning from molecular structure. J Pharm Sci 2003;92(2):360-70
  • Doniger S, Hofmann T, Yeh J. Predicting CNS permeability of drug molecules: comparison of neural network and support vector machines. J Comput Biol 2002;9(6):849-64
  • Platts JA, Abraham MH, Zhao YH, Correlation and prediction of a large blood-brain distribution data set-an LFER study. Eur J Med Chem 2001;36:719-30
  • Osterber T, Norinder U. Prediction of drug transport processes using simple parameters and PLS statistics: the use of ACD/logP and ACD/ChemSketch descriptors. Eur J Pharm Sci 2001;12:327-37
  • Crivori P, Cruciani G, Carrupt P-A, Testa B. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J Med Chem 2000;43:2204-16
  • Luco JM. Prediction of the brain-blood distribution of a large set of drugs from structurally derived descriptors using Partial Least-Squares (PLS) modeling. J Chem Inf Comput Sci 1999;39:396-404
  • Norinder U, Sjoberg P, Osterberg T. Theoretical calculation and prediction of brain-blood partitioning of organic solutes using MolSurf parametrization and PLS statistics. J Pharm Sci 1998;87(8):952-9
  • Lombardo F, Blake JF, Curatolo WJ. Computation of brain-blood partitioning of organic solutes via free energy calculations. J Med Chem 1996;39(24):4750-5
  • Chadha H, Abraham MH, Mitchell RC. Physicochemical analysis of the factors governing distribution of solutes between blood and brain. Bioorg Med Chem Lett 1994;4(21):2511-16
  • Abraham MH, Chadha H, Mitchell RC. Hydrogen bonding: 33. Factors that influence the distribution of solutes between blood and brain. J Pharm Sci 1994;83(9):1257-68
  • Chen H, Winiwarter S, Friden M, In silico prediction of unbound brain-to-plasma concentration ratio using machine learning algorithms. J Mol Graph Model 2011;29(8):985-95
  • Friden M, Bergstrom F, Wan H, Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab Dispos 2011;39(3):353-62
  • Lanevskij K, Dapkunas J, Juska L, QSAR analysis of blood–brain distribution: the influence of plasma and brain tissue binding. J Pharm Sci 2011;100(6):2147-60
  • Kelder J, Grootenhuis PDJ, Bayada DM, Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharm Res 1999;16(10):1514-19
  • Clark DE. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration. J Pharm Sci 1999;88(8):815-21
  • Wager TT, Chandrasekaran RY, Hou X, Defining desirable central nervous system drug space through the alignment of molecular properties, in vitro ADME, and safety attributes. ACS Chem Neurosci 2010;1(6):420-34
  • Wager TT, Hou XJ, Rong H, Role of P-gp in CNS drug discovery [abstract MEDI-161]. Abstracts of Papers, 241st ACS National Meeting; 27 – 31 March 2011; Anaheim, CA
  • Ghose AK, Herbertz T, Hudkins RL, Knowledge-based, Central Nervous System (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci 2012;3(1):50-68
  • Ajay, Bemis GW, Murcko MA. Designing libraries with CNS activity. J Med Chem 1999;42(24):4942-57
  • Rose K, Hall LH, Kier LB. Modeling blood-brain barrier partitioning using the electrotopological state. J Chem Inf Comput Sci 2002;42:651-6
  • Shaffer CL. Determining neuropharmacokinetic parameters in CNS drug discovery to determine cross-species pharmacologic exposure-response relationships. In: Macor JE, editor. Annu Rep Med Chem. Boston: Academic Press; 2010;45:55-70
  • de Lange ECM, Danhof M. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 2002;41(10):691-703
  • Oyler GA, Duckrow RB, Hawkins RA. Computer simulation of the blood-brain barrier: a model including two membranes, blood flow, facilitated and non-facilitated diffusion. J Neurosci Methods 1992;44(2-3):179-96
  • Kim CS, Ross IA, Sandberg JA, Preston E. Quantitative low-dose assessment of seafood toxin, domoic acid, in the rat brain: application of physiologically-based pharmacokinetic (PBPK) modeling. Environ Toxicol Pharmacol 1998;6(1):49-58
  • Liu X, Smith BJ, Chen C, Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Ther 2005;313(3):1254-62
  • Hammarlund-Udenaes M, Friden M, Syvaenen S, Gupta A. On the rate and extent of drug delivery to the brain. Pharm Res 2008;25(8):1737-50
  • Fenneteau F, Turgeon J, Couture L, Assessing drug distribution in tissues expressing p-glycoprotein through physiologically based pharmacokinetic modelling: model structure and parameters determination. Theor Biol Med Model 2009;6:2
  • Kuttler A, Dimke T, Kern S, Understanding pharmacokinetics using realistic computational models of fluid dynamics: biosimulation of drug distribution within the CSF space for intrathecal drugs. J Pharmacokinet Pharmacodyn 2010;37(6):629-44
  • Pardridge WM. Drug transport in brain via the cerebrospinal fluid. Fluids Barriers CNS 2011;8(1):7
  • Tsinman O, Tsinman K, Sun N, Avdeef A. Physicochemical selectivity of the BBB microenvironment governing passive diffusion-matching with a porcine brain lipid extract artificial membrane permeability model. Pharm Res 2010;28(2):337-63
  • Tran TT, Mittal A, Aldinger T, The elementary mass action rate constants of p-gp transport for a confluent monolayer of MDCKII-hMDR1 cells. Biophys J 2005;88(1):715-38
  • Tran TT, Mittal A, Gales T, Exact kinetic analysis of passive transport across a polarized confluent MDCK cell monolayer modeled as a single barrier. J Pharm Sci 2004;93(8):2108-23
  • Ito K, Uchida Y, Ohtsuki S, Quantitative membrane protein expression at the blood-brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 2011;100(9):3939-50
  • Uchida Y, Ohtsuki S, Katsukura Y, Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem 2011;117(2):333-45
  • Bradbury M, Begley D, Kreuter J. editors. The Blood-Brain Barrier and Drug Delivery to the CNS. New York: Marcel Dekker; 2000;93-108
  • Fagerholm U. The highly permeable blood-brain barrier: an evaluation of current opinions about brain uptake capacity. Drug Discov Today 2007;12(23&24):1076-82
  • Kumar G, Smith QR, Hokari M, Brain uptake, pharmacokinetics, and tissue distribution in the rat of neurotoxic N-butylbenzenesulfonamide. Toxicol Sci 2007;97(2):253-64
  • Dohrmann GJ. The choroid plexus: a historical review. Brain Res 1970;18(2):197-218
  • Strazielle N, Ghersi-Egea JF. Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 2000;59(7):561-74
  • Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF. Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 1984;246(6 Pt 2):F835-44
  • Westerhout J, Danhof M, De Lange EC, Preclinical prediction of human brain target site concentrations: considerations in extrapolating to the clinical setting. J Pharm Sci 2011;100(9):3577-93
  • Kandel ER, Schwartz J, Jessell T. Principles of Neural Science. New York: McGraw-Hill; 2000

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.