92
Views
13
CrossRef citations to date
0
Altmetric
Reviews

In silico analysis of antifungal peptides

determining the lead template sequence of potent antifungal peptides

, MSc, , MSc & , PharmD, PhD
Pages 837-847 | Published online: 26 Jul 2007

Bibliography

  • HANCOCK REW, CHAPPLE DS: Peptide antibiotics. Antimicrob. Agents Chemother. (1999) 43(6):1317-1323.
  • VIZIOLI J, SALZET M: Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol. Sci. (2002) 23(11):494-496.
  • YEAMAN RM, YOUNT YN: Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. (2003) 55:27-55.
  • GIANGASPERO A, SANDRI L, TOSSI A: Amphipathic α helical antimicrobial peptides, a systematic study of the effects of structural and physical properties on biological activity. Eur. J. Biochem. (2001) 268:5589-5600.
  • BESSON F, MICHEL G: Isolation and characterization of new iturins: iturin D and iturin E. J. Antibiot. (Tokyo) (1987) 40(4):437-442.
  • DALLA SERRA M, FAGIUOLI G, NORDERA P et al.: The interaction of lipodepsipeptide toxins from Pseudomonas syringae pv. syringae with biological and model membranes: a comparison of syringotoxin, syringomycin, and two syringopeptins. Mol. Plant Microb. Interact. (1999) 12(5):391-400.
  • VAZQUEZ JA, SOBEL JD: Anidulafungin: a novel echinocandin. Clin. Infect. Dis. (2006) 43:215-222.
  • SCHAAPER WM, POSTHUMA GA, PLASMEN HH et al.: Synthetic peptides derived from the β2-β3 loop of Raphanus sativus antifungal protein 2 that mimic the active site. J. Pept. Res. (2001) 57:409-418.
  • CHU KT, XIA L, NG TB: Pleurostrin an antifungal peptide from the oyster mushroom. Peptides (2005) 26:2098-2103.
  • CONLON LM, KOLODZIEJEK J, NOWONTNY N: Antimicrobial peptides from Ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim. Biophys. Acta (2004) 1696:1-14.
  • O’NEIL DA: Regulation of expression of β-defensins: endogenous enteric peptide antibiotics. Mol. Immunol. (2003) 40:445-450.
  • KOO JC, LEE SY, CHUN H J et al.: Two hevein homologous isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochim. Biophys. Acta (1998) 132:262-268.
  • TAM JP, LU YA, YANG JL, CHIU KW: An unusual structural motif of antimicrobial peptides containing end-to-end macrocyle and cystine-knot disulfides. Proc. Natl. Acad. Sci. USA (1999) 96:8913-8918.
  • HX W, NG TB: Novel antifungal peptides from Ceylon spinach seeds. Biochem. Biophys. Res. Commun. (2001) 288:765-770.
  • NG TB: Antifungal proteins and peptides of leguminous and non-leguminous origin. Peptides (2000) 25:1215-1222.
  • DENNISON SR, WALLACE J, HARRIS F, PHOENIX D: Amphiphilic α-helical antimicrobial peptides and their structure/function relationships. Protein Pept. Lett. (2005) 12:31-39.
  • OREN Z, SHAI Y: Mode of action of linear amphipathic α-helical antimicrobial peptides. Biopolymers (Peptide Sci.) (1998) 47:451-463.
  • RAPAPORT D, SHAI Y: Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers. J. Biol. Chem. (1991) 266:23769-23775.
  • SHAI Y, OREN Z: From “carpet” mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides. Peptides (2001) 22:1629-1641.
  • SCOTT GM, YAN H, HANCOCK EW: Biological properties of structurally related α-helical cationic antimicrobial peptides. Infect. Immun. (1999) 67(4):2005-2009.
  • LIU ZG, BRADY A, YOUNG A et al.: Length effects in antimicrobial peptides of the (RW)n series. Antimicrob. Agents Chemother. (2007) 51(2):597-603.
  • DATHE M, NIKOLENKO H, MEYER J, BEYERMANN M, BIENERT M: Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett. (2001) 501:146-150.
  • LEE DG, SHIN SY, MAENG CY, JIN ZZ, KIM KL, HAHM KS: Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochem. Biophys. Res. Commun. (1999) 263:646-651.
  • CONLON LM, KOLODZIEJEK J, NOWONTNY N: Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim. Biophys. Acta (2004) 1696:1-14.
  • MICHAUT L, FEHLBAUM P, MONIATTE M, DORSSELAER AV, REICHHART JM, BULET P: Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Lett. (1996) 395:6-10.
  • ROZEK TOMAS, WEGWNWR KL, BOWIE JH et al.: The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria rainformis. Eur. J. Biochem. (2000) 267:5330-5341.
  • KAJIYAMA SI, KANZAKI H, KAZUYOSHI K, KOBAYAASHI A: Nostofungicidine, an antifungal lipopeptide from the field-grown terrestrial blue-green alga Nostoc commune. Tetrahedron Lett. (1998) 39:3737-3740.
  • SKERLAVAJ B, BENINCASA M, RISSO A, ZANETTI M, RENATO G: SAMP29: a potent antimicrobial and antifungal peptide from sheep leukocyte. FEBS Lett. (1999) 463:58-62.
  • YANG L, TAN RX, WANG Q, HUANG WY, YIN YX: antifungal cyclopeptides from Halobacillus litoralis YS3106 of marine origin. Tetrahedron Lett. (2002) 43:6545-6548.
  • EUN OH J, HONG SU, LEE KH: The comparison of characteristics between membrane-active antifungal peptide and its pseudo peptides. Bioorganic. Med. Chem. (1999) 7:2509-2515.
  • KLOTZ SA, GAUR NK, RAUCEO J, LAKE DF, PARK Y, HAHM KS: Inhibition of adherence and killing of Candida albicans with a 23-mer peptide (Fn/23) with dual antifungal properties. Antimicrob. Agent Chemother. (2004) 48(11):4337-4341.
  • KRISTENSEN AK, BRUNSTEDT J, NIELSEN JE et al.: Partial characterization and isolation of a novel type of antifungal protein (IWF6) isolated from sugar beet leaves. Plant Sci. (2000) 159:29-38.
  • ANDREU A, RIVAS L: Animal antimicrobial peptides: an overview. John Wiley & Sons, Inc. Biology (1998) 47:415-433.
  • WANG H, NG TB: Isolation of cicadin, a novel and potent antifungal peptide from dried juvenile cicadas. Peptides (2002) 23:7-11.
  • WANG HX, NG TB: Concurrent isolation of a Kunitz-type trypsin inhibitor with antifungal activity and a novel lectin from Pseudostellaria heterophylla roots. Biochem. Biophys. Res. Commun. (2006) 342:349-353.
  • LAI FM, DELONG C, MEI K, WIGNES T, FOBERT PR: Analysis of DRR230 family of defensin: gene expression pattern and evidence of broad host–range antifungal activity. Plant Sci. (2002) 163:855-864.
  • KUMAR M, CHATURVEDI AK, KAVISHWAR A, SHUKLA PK, KESARWANI AP, KUNDU B: Identification of novel antifungal peptide generated by combinatorial approach. Int. J. Antimicrob. Agent (2005) 25:313-320.
  • GAO GH, LIU W, DAI JX et al.: Molecular scaffold of a new pokeweed antifungal peptide deduced by H nuclear magnetic resonance. Int. J. Bio. Macromolecules (2001) 29:251-258.
  • SEPE V, ORSI RD, BORBONE N et al.: Callipeltins F-I: NEW antifungal peptides from the marine sponge Latrunculia sp. Tetrahedron (2006) 62:833-840.
  • WONG JH, NG TB: Gymnin a potent defencin–like antifungal peptide from the Yunnan bean (Gymmnocladus chinensis Baill). Peptides (2003) 24:963-968.
  • CHU KT, LIU KH, NG TB: Cicerarin, a novel antifungal peptide from the green chickpea. Peptides (2003) 24:659-663.
  • NGAI PHK, NG TB: Coccinin, an antifungal peptide with antiprolifrative and HIV-1reverse transcriptase inhibitory activities from large scarlet runner beans. Peptides (2004) 25:2063-2068.
  • GUO YX, LIU QH, NG TB, WANG HX: Isarfelin, a new peptide with antifungal and insecticidal activities from Isaria feline. Peptides (2005) 26:2384-2391
  • TANAKA H, SATIO K, SATIO Y et al.: insect diapuse-specific peptide from the leaf beetle has consensus with a putative iridovirus peptide. Peptides (2003) 24:1327-1333.
  • MERCHANT ME, LEGER N, JERKINS E et al.: Broad spectrum antimicrobial activity of leukocyte extract from the American alligator (Alligator mississippiensis). Vet. Immunol. Immunopathol. (2006) 110:221-228.
  • NG TB, WANG H: Eryngin, a novel antifungal peptide from bodies of the edible mushroom Pleurotus eryngii. Peptides (2004) 25:1-5.
  • NAGAI PHK, ZHAO Z, NG TB: Agrocybin, an antifungal peptide from the edible mushroom Agrocybe cylindracea. Peptides (2005) 26:191-196.
  • WANG HX, NG TB: An antifungal peptide from the coconut. Peptides (2005) 26:2392-2396.
  • NG TB, WONG JH: Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseoulus vulgaris). Int. J. Biochem. Cell Biol. (2005) 37:1626-1632.
  • WAKAYAMA S, ISHIKAWA F, OISHI K: Mycocerein, a novel antifungal peptide antibiotic produced by Bacillus cereus. Antimicrob. Agent Chemother. (1984) 26(6):939-940.
  • PAL T, ABRAHAM B, SONNEVEND A, JAMAA P, CONLON JM: Brevinin-1BYa: a naturally occuring peptide from frog skin with broad-spectrum antimicrobial and antifungal properties. Int. J. Antimicrob. Agent (2006) 27:252-529.
  • OARD S, KARKI B: Mechanism of β-purothionin antimicrobial peptide inhibition by metal ions: molecular dynamics simulation study. Biophy. Chem. (2006) 121:30-43.
  • BANZET N, LOTRES MP, BULET P, FRANCOSIS E, DEROPIERRE C, DUBALD M: Expression of insect cystein-rich antifungal peptides in transgenic tobacco enhances resistance to a fungal disease. Plant Sci. (2002) 162:995-1006.
  • HUANG RH, XIANG Y, LIU XZ, ZHANG Y, HU ZHONG WANG DC: Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Olive. FEBS Lett. (2002) 521:87-90
  • JANG WS, KIM HK, LEE KY, KIM SA, HAN YS, LEE IH: Antifungal activity of synthetic peptides derived from Halocidin, antimicrobial peptide from the tunicate, Halocynthia aurantium. FEBS Lett. (2006) 580:1490-1496.
  • JUNG HJ, PARK Y, HAHM KS, LEE DG: Biological activity of Tat (47 – 58) peptide on human pathogenic fungi. Biochem. Biophys. Res. Commun. (2006) 345:222-228.
  • ZELEZETSKY I, TOSSI A: α-helical antimicrobial peptides – Using a sequence template to guide structure–activity relationship studies. Biochim. Biophys. Acta (2006) 1758:1436-1449.
  • DELEAGE G, ROUX B: An algorithm for protein secondary structure prediction based on class prediction. Protein Eng. (1987) 1(4):289-294.
  • TOSSI A, TARANTINO C, ROMEO D: Design of synthetic antimicrobial peptides based on sequence analogy and amphipathicity. Eur. J. Biochem. (1997) 250:549-558.
  • SATO H, FEIX BJ: Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim. Biophys. Acta (2006) 1758:1245-1256
  • KONDEJEWSKI LH, LEE DL, JELOKHANI-NIARAKI M, FARMER SW, HANCOK RE, HODGES RS: Optimization of microbial specificity in cyclic peptides by modulation of hydrophobicity within a defined structural framework. J. Biol. Chem. (2002) 277(1):67-74.
  • EISENBERG D, WEISS RM, TERWILLIGR TC: The hydrophobic moment detects periodicity in protein hydrophobicity. Proc. Natl. Acad. Sci. USA (1984) 81:140-144.
  • KYTE J, DOOLITTLE RE: A simple method for displaying the hydrophatic character of a protein. J. Mol. Biol. (1982) 157:105-132.
  • TAYLOR WR: The classification of amino acid conservation. J. Theor. Biol. (1986) 119:205-218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.