356
Views
24
CrossRef citations to date
0
Altmetric
Review

Approaches for discovering anti-prion compounds: lessons learned and challenges ahead

(Professor) & (Professor)

Bibliography

  • Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science 1982;216(4542):136-44
  • Aguzzi A, Polymenidou M. Mammalian prion biology: one century of evolving concepts. Cell 2004;116(2):313-27
  • Polymenidou M, Cleveland DW. Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 2012;209(5):889-93
  • Costanzo M, Zurzolo C. The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J 2013;452(1):1-17
  • Prusiner SB. Cell biology. A unifying role for prions in neurodegenerative diseases. Science 2012;336(6088):1511-13
  • Legname G, Bolognesi ML. Editorial (Thematic issue: Recent advances of biology and medicinal chemistry of prion protein and prions: on the road to therapeutics). Curr Top Med Chem 2013;13(19):2395-6
  • Cummings JL, Morstorf T, Zhong K. Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 2014;6(4):37
  • Gravitz L. Drugs: a tangled web of targets. Nature 2011;475(7355):S9-11
  • Ghose AK, Herbertz T, Hudkins RL, et al. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci 2012;3(1):50-68
  • Abbott NJ. Blood-brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 2013;36(3):437-49
  • Forloni G, Artuso V, Roiter I, et al. Therapy in prion diseases. Curr Top Med Chem 2013;13(19):2465-76
  • Baral PK, Swayampakula M, Rout MK, et al. Structural basis of prion inhibition by phenothiazine compounds. Structure 2014;22(2):291-303
  • Alzheimer’s Association National Plan Milestone W. Fargo KN, Aisen P, Albert M, et al. 2014 Report on the Milestones for the US National Plan to Address Alzheimer’s Disease. Alzheimers Dement 2014;10(5S):S430-S52
  • Braun MM, Farag-El-Massah S, Xu K, et al. Emergence of orphan drugs in the United States: a quantitative assessment of the first 25 years. Nat Rev Drug Discov 2010;9(7):519-22
  • Committee for Orphan Medicinal Products, the European Medicines. Westermark K, Holm BB, Soderholm M, et al. European regulation on orphan medicinal products: 10 years of experience and future perspectives. Nat Rev Drug Discov 2011;10(5):341-9
  • Bodemer W. The use of monoclonal antibodies in human prion disease. Naturwissenschaften 1999;86(5):212-20
  • Fernandez-Borges N, Elezgarai SR, Erana H, et al. Animal models for testing anti-prion drugs. Curr Top Med Chem 2013;13(19):2504-21
  • Malaga-Trillo E, Sempou E. PrPs: proteins with a purpose: Lessons from the zebrafish. Prion 2009;3(3):129-33
  • Ghaemmaghami S, Russo M, Renslo AR. Successes and challenges in phenotype-based lead discovery for prion diseases. J Med Chem 2014;57(16):6919-29
  • Lee JA, Uhlik MT, Moxham CM, et al. Modern phenotypic drug discovery is a viable, neoclassic pharma strategy. J Med Chem 2012;55(10):4527-38
  • Sykes ML, Avery VM. Approaches to protozoan drug discovery: phenotypic screening. J Med Chem 2013;56(20):7727-40
  • Kell DB. Finding novel pharmaceuticals in the systems biology era using multiple effective drug targets, phenotypic screening and knowledge of transporters: where drug discovery went wrong and how to fix it. FEBS J 2013;280(23):5957-80
  • Zhang M, Luo G, Zhou Y, et al. Phenotypic screens targeting neurodegenerative diseases. J Biomol Screen 2014;19(1):1-16
  • Korth C, Klingenstein R, Muller-Schiffmann A. Hybrid molecules synergistically acting against protein aggregation diseases. Curr Top Med Chem 2013;13(19):2484-90
  • Vilette D. Cell models of prion infection. Vet Res 2008;39(4):10
  • Geissen M, Leidel F, Eiden M, et al. From high-throughput cell culture screening to mouse model: identification of new inhibitor classes against prion disease. ChemMedChem 2011;6(10):1928-37
  • Reaume AG. Drug repurposing through nonhypothesis driven phenotypic screening. Drug Discov Today 2012;8(3):85-8
  • Cummings JL, Zhong K. Repackaging FDA-approved drugs for degenerative diseases: promises and challenges. Expert Rev Clin Pharmacol 2014;7(2):161-5
  • Bongarzone S, Bolognesi ML. The concept of privileged structures in rational drug design: focus on acridine and quinoline scaffolds in neurodegenerative and protozoan diseases. Expert Opin Drug Discov 2011;6(3):251-68
  • Doh-Ura K, Iwaki T, Caughey B. Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J Virol 2000;74(10):4894-7
  • Korth C, May BC, Cohen FE, Prusiner SB. Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc Natl Acad Sci USA 2001;98(17):9836-41
  • Collins SJ, Lewis V, Brazier M, et al. Quinacrine does not prolong survival in a murine Creutzfeldt-Jakob disease model. Ann Neurol 2002;52(4):503-6
  • Geschwind MD, Kuo AL, Wong KS, et al. Quinacrine treatment trial for sporadic Creutzfeldt-Jakob disease. Neurology 2013;81(23):2015-23
  • Ghaemmaghami S, Ahn M, Lessard P, et al. Continuous quinacrine treatment results in the formation of drug-resistant prions. PLoS Pathog 2009;5(11):e1000673
  • Huang Y, Okochi H, May BC, et al. Quinacrine is mainly metabolized to mono-desethyl quinacrine by CYP3A4/5 and its brain accumulation is limited by P-glycoprotein. Drug Metab Dispos 2006;34(7):1136-44
  • Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005;2(1):86-98
  • Karapetyan YE, Sferrazza GF, Zhou M, et al. Unique drug screening approach for prion diseases identifies tacrolimus and astemizole as antiprion agents. Proc Natl Acad Sci USA 2013;110(17):7044-9
  • Bach S, Talarek N, Andrieu T, et al. Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nat Biotechnol 2003;21(9):1075-81
  • Tribouillard-Tanvier D, Beringue V, Desban N, et al. Antihypertensive drug guanabenz is active in vivo against both yeast and mammalian prions. PLoS One 2008;3(4):e1981
  • Tribouillard-Tanvier D, Dos Reis S, Gug F, et al. Protein folding activity of ribosomal RNA is a selective target of two unrelated antiprion drugs. PLoS One 2008;3(5):e2174
  • Merlini G, Ascari E, Amboldi N, et al. Interaction of the anthracycline 4’-iodo-4’-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proc Natl Acad Sci USA 1995;92(7):2959-63
  • Tagliavini F, McArthur RA, Canciani B, et al. Effectiveness of anthracycline against experimental prion disease in Syrian hamsters. Science 1997;276(5315):1119-22
  • Tagliavini F, Forloni G, Colombo L, et al. Tetracycline affects abnormal properties of synthetic PrP peptides and PrP(Sc) in vitro. J Mol Biol 2000;300(5):1309-22
  • Forloni G, Iussich S, Awan T, et al. Tetracyclines affect prion infectivity. Proc Natl Acad Sci USA 2002;99(16):10849-54
  • Haik S, Marcon G, Mallet A, et al. Doxycycline in Creutzfeldt-Jakob disease: a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2014;13(2):150-8
  • Geschwind MD. Doxycycline for Creutzfeldt-Jakob disease: a failure, but a step in the right direction. Lancet Neurol 2014;13(2):130-2
  • Aube J. Drug repurposing and the medicinal chemist. ACS Med Chem Lett 2012;3(6):442-4
  • Cope H, Mutter R, Heal W, et al. Synthesis and SAR study of acridine, 2-methylquinoline and 2-phenylquinazoline analogues as anti-prion agents. Eur J Med Chem 2006;41(10):1124-43
  • Nguyen TH, Lee CY, Teruya K, et al. Antiprion activity of functionalized 9-aminoacridines related to quinacrine. Bioorg Med Chem 2008;16(14):6737-46
  • Villa V, Tonelli M, Thellung S, et al. Efficacy of novel acridine derivatives in the inhibition of hPrP90-231 prion protein fragment toxicity. Neurotox Res 2011;19(4):556-74
  • Nguyen T, Yang T, Go ML. Functionalized acridin-9-yl phenylamines protected neuronal HT22 cells from glutamate-induced cell death by reducing intracellular levels of free radical species. Bioorg Med Chem Lett 2014;24(7):1830-8
  • Staderini M, Legname G, Bolognesi ML, et al. Modulation of prion by small molecules: from monovalent to bivalent and multivalent ligands. Curr Top Med Chem 2013;13(19):2491-503
  • May BC, Fafarman AT, Hong SB, et al. Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. Proc Natl Acad Sci USA 2003;100(6):3416-21
  • Bongarzone S, Tran HN, Cavalli A, et al. Parallel synthesis, evaluation, and preliminary structure-activity relationship of 2,5-diamino-1,4-benzoquinones as a novel class of bivalent anti-prion compound. J Med Chem 2010;53(22):8197-201
  • Nguyen PH, Hammoud H, Halliez S, et al. Structure-activity relationship study around guanabenz identifies two derivatives retaining antiprion activity but having lost alpha2-adrenergic receptor agonistic activity. ACS Chem Neurosci 2014;5(10):1075-82
  • Colby DW, Zhang Q, Wang S, et al. Prion detection by an amyloid seeding assay. Proc Natl Acad Sci USA 2007;104(52):20914-19
  • Wilham JM, Orru CD, Bessen RA, et al. Rapid end-point quantitation of prion seeding activity with sensitivity comparable to bioassays. PLoS Pathog 2010;6(12):e1001217

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.