521
Views
24
CrossRef citations to date
0
Altmetric
Review

Positron-emission tomography molecular imaging of glia and myelin in drug discovery for multiple sclerosis

(Professor) &

Bibliography

  • Giunti D, Parodi B, Cordano C, et al. Can we switch microglia’s phenotype to foster neuroprotection? Focus on multiple sclerosis. Immunology 2014;141(3):328-39
  • Lubetzki C, Stankoff B. Demyelination in multiple sclerosis. Handb Clin Neurol 2014;122:89-99
  • Clemente D, Ortega MC, Melero-Jerez C, et al. The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases. Front Cell Neurosci 2013;7:268
  • Bermel RA, Fisher E, Cohen JA. The use of mr imaging as an outcome measure in multiple sclerosis clinical trials. Neuroimaging Clin N Am 2008;18(4):687-701, xi
  • Chang L, Munsaka SM, Kraft-Terry S, et al. Magnetic resonance spectroscopy to assess neuroinflammation and neuropathic pain. J Neuroimmune Pharmacol 2013;8(3):576-93
  • Vrenken H, Barkhof F, Uitdehaag BM, et al. Mr spectroscopic evidence for glial increase but not for neuro-axonal damage in ms normal-appearing white matter. Magn Reson Med 2005;53(2):256-66
  • Kapeller P, Ropele S, Enzinger C, et al. Discrimination of white matter lesions and multiple sclerosis plaques by short echo quantitative 1h-magnetic resonance spectroscopy. J Neurol 2005;252(10):1229-34
  • Bagory M, Durand-Dubief F, Ibarrola D, et al. Implementation of an absolute brain 1h-mrs quantification method to assess different tissue alterations in multiple sclerosis. IEEE Trans Biomed Eng 2012;59(10):2687-94
  • Geurts JJ, Reuling IE, Vrenken H, et al. Mr spectroscopic evidence for thalamic and hippocampal, but not cortical, damage in multiple sclerosis. Magn Reson Med 2006;55(3):478-83
  • Sailasuta N, Harris K, Tran T, et al. Minimally invasive biomarker confirms glial activation present in alzheimer’s disease: a preliminary study. Neuropsychiatr Dis Treat 2011;7:495-9
  • Maudsley AA, Darkazanli A, Alger JR, et al. Comprehensive processing, display and analysis for in vivo mr spectroscopic imaging. NMR Biomed 2006;19(4):492-503
  • Whittall KP, MacKay AL, Graeb DA, et al. In vivo measurement of t2 distributions and water contents in normal human brain. Magn Reson Med 1997;37(1):34-43
  • Prasloski T, Rauscher A, MacKay AL, et al. Rapid whole cerebrum myelin water imaging using a 3d grase sequence. Neuroimage 2012;63(1):533-9
  • Chen JT, Collins DL, Atkins HL, et al. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions. Ann Neurol 2008;63(2):254-62
  • Alexander AL, Lee JE, Lazar M, et al. Diffusion tensor imaging of the brain. Neurotherapeutics 2007;4(3):316-29
  • de Lartigue J. Flutemetamol (18f): a beta-amyloid positron emission tomography tracer for alzheimer’s and dementia diagnosis. Drugs Today (Barc) 2014;50(3):219-29
  • Guo Q, Colasanti A, Owen DR, et al. Quantification of the specific translocator protein signal of 18f-pbr111 in healthy humans: a genetic polymorphism effect on in vivo binding. J Nucl Med 2013;54(11):1915-23
  • Tomasi G, Edison P, Bertoldo A, et al. Novel reference region model reveals increased microglial and reduced vascular binding of 11c-(r)-pk11195 in patients with alzheimer’s disease. J Nucl Med 2008;49(8):1249-56
  • National Center for Biotechnology Information (NCBI), National Institutes of Health, USA
  • Guo Q, Owen DR, Rabiner EA, et al. A graphical method to compare the in vivo binding potential of pet radioligands in the absence of a reference region: application to [(1)(1)c]pbr28 and [(1)(8)f]pbr111 for tspo imaging. J Cereb Blood Flow Metab 2014;34(7):1162-8
  • Wang MW, Lin WY, Liu K, et al. Microfluidics for positron emission tomography probe development. Mol Imaging 2010;9(4):175-91
  • O’Callaghan JP, Sriram K, Miller DB. Defining “neuroinflammation”. Ann N Y Acad Sci 2008;1139:318-30
  • Jensen CJ, Massie A, De Keyser J. Immune players in the cns: the astrocyte. J Neuroimmune Pharmacol 2013;8(4):824-39
  • Van De Wiele C, Sathekge M, Maes A. Targeting monocytes and macrophages by means of spect and pet. Q J Nucl Med Mol Imaging 2014;58(3):269-75
  • Gent YY, Weijers K, Molthoff CF, et al. Evaluation of the novel folate receptor ligand [18f]fluoro-peg-folate for macrophage targeting in a rat model of arthritis. Arthritis Res Ther 2013;15(2):R37
  • Lu Y, Wollak KN, Cross VA, et al. Folate receptor-targeted aminopterin therapy is highly effective and specific in experimental models of autoimmune uveitis and autoimmune encephalomyelitis. Clin Immunol 2014;150(1):64-77
  • Afaq A, Syed R, Bomanji J. Pet/mri: a new technology in the field of molecular imaging. Br Med Bull 2013;108:159-71
  • Lavisse S, Guillermier M, Herard AS, et al. Reactive astrocytes overexpress tspo and are detected by tspo positron emission tomography imaging. J Neurosci 2012;32(32):10809-18
  • Hannestad J, Gallezot JD, Schafbauer T, et al. Endotoxin-induced systemic inflammation activates microglia: [(1)(1)c]pbr28 positron emission tomography in nonhuman primates. Neuroimage 2012;63(1):232-9
  • Xie L, Yamasaki T, Ichimaru N, et al. [(11)c]dac-pet for noninvasively monitoring neuroinflammation and immunosuppressive therapy efficacy in rat experimental autoimmune encephalomyelitis model. J Neuroimmune Pharmacol 2012;7(1):231-42
  • Abourbeh G, Theze B, Maroy R, et al. Imaging microglial/macrophage activation in spinal cords of experimental autoimmune encephalomyelitis rats by positron emission tomography using the mitochondrial 18 kda translocator protein radioligand [(1)(8)f]dpa-714. J Neurosci 2012;32(17):5728-36
  • Mattner F, Staykova M, Berghofer P, et al. Central nervous system expression and pet imaging of the translocator protein in relapsing-remitting experimental autoimmune encephalomyelitis. J Nucl Med 2013;54(2):291-8
  • Chen MK, Guilarte TR. Imaging the peripheral benzodiazepine receptor response in central nervous system demyelination and remyelination. Toxicol Sci 2006;91(2):532-9
  • Banati RB, Newcombe J, Gunn RN, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123(Pt 11):2321-37
  • Owen DR, Howell OW, Tang SP, et al. Two binding sites for [3h]pbr28 in human brain: implications for tspo pet imaging of neuroinflammation. J Cereb Blood Flow Metab 2010;30(9):1608-18
  • Vowinckel E, Reutens D, Becher B, et al. Pk11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis. J Neurosci Res 1997;50(2):345-53
  • Cosenza-Nashat M, Zhao ML, Suh HS, et al. Expression of the translocator protein of 18 kda by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 2009;35(3):306-28
  • Ratchford JN, Endres CJ, Hammoud DA, et al. Decreased microglial activation in ms patients treated with glatiramer acetate. J Neurol 2012;259(6):1199-205
  • Hashimoto K, Inoue O, Suzuki K, et al. Synthesis and evaluation of 11c-pk 11195 for in vivo study of peripheral-type benzodiazepine receptors using positron emission tomography. Ann Nucl Med 1989;3(2):63-71
  • Chauveau F, Boutin H, Van Camp N, et al. Nuclear imaging of neuroinflammation: a comprehensive review of [11c]pk11195 challengers. Eur J Nucl Med Mol Imaging 2008;35(12):2304-19
  • Maeda J, Suhara T, Zhang MR, et al. Novel peripheral benzodiazepine receptor ligand [11c]daa1106 for pet: an imaging tool for glial cells in the brain. Synapse 2004;52(4):283-91
  • Van Camp N, Boisgard R, Kuhnast B, et al. In vivo imaging of neuroinflammation: a comparative study between [(18)f]pbr111, [(11)c]clinme and [(11)c]pk11195 in an acute rodent model. Eur J Nucl Med Mol Imaging 2010;37(5):962-72
  • Brown AK, Fujita M, Fujimura Y, et al. Radiation dosimetry and biodistribution in monkey and man of 11c-pbr28: a pet radioligand to image inflammation. J Nucl Med 2007;48(12):2072-9
  • Wilson AA, Garcia A, Parkes J, et al. Radiosynthesis and initial evaluation of [18f]-feppa for pet imaging of peripheral benzodiazepine receptors. Nucl Med Biol 2008;35(3):305-14
  • Tiwari AK, Yui J, Fujinaga M, et al. Characterization of a novel acetamidobenzoxazolone-based pet ligand for translocator protein (18 kda) imaging of neuroinflammation in the brain. J Neurochem 2014;129(4):712-20
  • Owen DR, Guo Q, Kalk NJ, et al. Determination of [(11)c]pbr28 binding potential in vivo: a first human tspo blocking study. J Cereb Blood Flow Metab 2014;34(6):989-94
  • Turkheimer FE, Edison P, Pavese N, et al. Reference and target region modeling of [11c]-(r)-pk11195 brain studies. J Nucl Med 2007;48(1):158-67
  • Yaqub M, van Berckel BN, Schuitemaker A, et al. Optimization of supervised cluster analysis for extracting reference tissue input curves in (r)-[(11)c]pk11195 brain pet studies. J Cereb Blood Flow Metab 2012;32(8):1600-8
  • Kreisl WC, Jenko KJ, Hines CS, et al. A genetic polymorphism for translocator protein 18 kda affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab 2013;33(1):53-8
  • Owen DR, Yeo AJ, Gunn RN, et al. An 18-kda translocator protein (tspo) polymorphism explains differences in binding affinity of the pet radioligand pbr28. J Cereb Blood Flow Metab 2012;32(1):1-5
  • Debruyne JC, Versijpt J, Van Laere KJ, et al. Pet visualization of microglia in multiple sclerosis patients using [11c]pk11195. Eur J Neurol 2003;10(3):257-64
  • Rissanen E, Tuisku J, Rokka J, et al. In vivo detection of diffuse inflammation in secondary progressive multiple sclerosis using pet imaging and the radioligand 11c-pk11195. J Nucl Med 2014;55(6):939-44
  • Giannetti P, Politis M, Su P, et al. Increased pk11195-pet binding in the normal appearing white matter in clinically isolated syndrome. Neurology 2015;138(Pt 1):110-19
  • Politis M, Giannetti P, Su P, et al. Increased pk11195 pet binding in the cortex of patients with ms correlates with disability. Neurology 2012;79(6):523-30
  • Colasanti A, Guo Q, Muhlert N, et al. In vivo assessment of brain white matter inflammation in multiple sclerosis with 18f-pbr111 pet. J Nucl Med 2014;55(7):1112-18
  • Lucchinetti CF, Popescu BF, Bunyan RF, et al. Inflammatory cortical demyelination in early multiple sclerosis. N Engl J Med 2011;365(23):2188-97
  • Giannetti P, Politis M, Su P, et al. Microglia activation in multiple sclerosis black holes predicts outcome in progressive patients: an in vivo [(11)c](r)-pk11195-pet pilot study. Neurobiol Dis 2014;65:203-10
  • Oh U, Fujita M, Ikonomidou VN, et al. Translocator protein pet imaging for glial activation in multiple sclerosis. J Neuroimmune Pharmacol 2011;6(3):354-61
  • Vas A, Shchukin Y, Karrenbauer VD, et al. Functional neuroimaging in multiple sclerosis with radiolabelled glia markers: preliminary comparative pet studies with [11c]vinpocetine and [11c]pk11195 in patients. J Neurol Sci 2008;264(1-2):9-17
  • Suridjan I, Rusjan PM, Kenk M, et al. Quantitative imaging of neuroinflammation in human white matter: a positron emission tomography study with translocator protein 18 kda radioligand, [18f]-feppa. Synapse 2014;68(11):536-47
  • Chen R, Mias GI, Li-Pook-Than J, et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012;148(6):1293-307
  • Melief J, Schuurman KG, van de Garde MD, et al. Microglia in normal appearing white matter of multiple sclerosis are alerted but immunosuppressed. Glia 2013;61(11):1848-61
  • Ko JH, Koshimori Y, Mizrahi R, et al. Voxel-based imaging of translocator protein 18 kda (tspo) in high-resolution pet. J Cereb Blood Flow Metab 2013;33(3):348-50
  • Takata K, Kato H, Shimosegawa E, et al. 11c-acetate pet imaging in patients with multiple sclerosis. PLoS ONE 2014;9(11):e111598
  • Kumlien E, Bergstrom M, Lilja A, et al. Positron emission tomography with [11c]deuterium-deprenyl in temporal lobe epilepsy. Epilepsia 1995;36(7):712-21
  • Fowler JS, MacGregor RR, Wolf AP, et al. Mapping human brain monoamine oxidase a and b with 11c-labeled suicide inactivators and pet. Science 1987;235(4787):481-5
  • Engler H, Nennesmo I, Kumlien E, et al. Imaging astrocytosis with pet in creutzfeldt-jakob disease: case report with histopathological findings. Int J Clin Exp Med 2012;5(2):201-7
  • Kumlien E, Nilsson A, Hagberg G, et al. Pet with 11c-deuterium-deprenyl and 18f-fdg in focal epilepsy. Acta Neurol Scand 2001;103(6):360-6
  • Saba W, Valette H, Peyronneau MA, et al. [(11)c]sl25.1188, a new reversible radioligand to study the monoamine oxidase type b with pet: preclinical characterisation in nonhuman primate. Synapse 2010;64(1):61-9
  • Rusjan PM, Wilson AA, Miler L, et al. Kinetic modeling of the monoamine oxidase b radioligand [(1)(1)c]sl25.1188 in human brain with high-resolution positron emission tomography. J Cereb Blood Flow Metab 2014;34(5):883-9
  • Tyacke RJ, Fisher A, Robinson ES, et al. Evaluation and initial in vitro and ex vivo characterization of the potential positron emission tomography ligand, bu99008 (2-(4,5-dihydro-1h-imidazol-2-yl)-1- methyl-1h-indole), for the imidazoline(2) binding site. Synapse 2012;66(6):542-51
  • Kealey S, Turner EM, Husbands SM, et al. Imaging imidazoline-i2 binding sites in porcine brain using 11c-bu99008. J Nucl Med 2013;54(1):139-44
  • Parker CA, Nabulsi N, Holden D, et al. Evaluation of 11c-bu99008, a pet ligand for the imidazoline2 binding sites in rhesus brain. J Nucl Med 2014;55(5):838-44
  • Luessi F, Kuhlmann T, Zipp F. Remyelinating strategies in multiple sclerosis. Expert Rev Neurother 2014;14(11):1315-34
  • Fodero-Tavoletti MT, Rowe CC, McLean CA, et al. Characterization of pib binding to white matter in alzheimer disease and other dementias. J Nucl Med 2009;50(2):198-204
  • Stankoff B, Freeman L, Aigrot MS, et al. Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-(1)(1)c]-2-(4’-methylaminophenyl)- 6-hydroxybenzothiazole. Ann Neurol 2011;69(4):673-80
  • Faria Dde P, Copray S, Sijbesma JW, et al. Pet imaging of focal demyelination and remyelination in a rat model of multiple sclerosis: comparison of [11c]medas, [11c]cic and [11c]pib. Eur J Nucl Med Mol Imaging 2014;41(5):995-1003
  • Wu C, Wang C, Popescu DC, et al. A novel pet marker for in vivo quantification of myelination. Bioorg Med Chem 2010;18(24):8592-9
  • Wu C, Zhu J, Baeslack J, et al. Longitudinal positron emission tomography imaging for monitoring myelin repair in the spinal cord. Ann Neurol 2013;74(5):688-98
  • Matthews PM, Coatney R, Alsaid H, et al. Technologies: preclinical imaging for drug development. Drug Discov Today Technol 2013;10(3):e343-50
  • McDonald WI, Miller DH, Barnes D. The pathological evolution of multiple sclerosis. Neuropathol Appl Neurobiol 1992;18(4):319-34
  • Bo L, Geurts JJ, Ravid R, et al. Magnetic resonance imaging as a tool to examine the neuropathology of multiple sclerosis. Neuropathol Appl Neurobiol 2004;30(2):106-17
  • Tofts PS. Standardisation and optimisation of magnetic resonance techniques for multicentre studies. J Neurol Neurosurg Psychiatry 1998;64(Suppl 1):S37-43
  • Tzimopoulou S, Cunningham VJ, Nichols TE, et al. A multi-center randomized proof-of-concept clinical trial applying [(1)(8)f]fdg-pet for evaluation of metabolic therapy with rosiglitazone xr in mild to moderate alzheimer’s disease. J Alzheimers Dis 2010;22(4):1241-56

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.