989
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Using quantitative systems pharmacology for novel drug discovery

Bibliography

  • Ideker T, Galitski T, Hood L. A new approach to decoding life: Systems biology. Annu Rev Genomics Hum Genet 2001;2:343-72
  • Anderson J. National institute of general medical sciences centers for systems biology. 2003. Available from: www.nigms.nih.gov/Research/FeaturedPrograms/SysBio/
  • Lauffenburger DA, Giacomini KM. Systems biology and systems pharmacology. The Bridge 2013;43:26-33
  • Rogers M, Lyster P, Okita R. NIH support for the emergence of quantitative and systems pharmacology. CPT Pharmacometrics Syst Pharmacol 2013;2:e37
  • Sorger PK, Allerheiligen SRB, Abernethy DR, et al. Quantitative and systems pharmacology in the post-genomic era: new approaches to discovering drugs and understanding therapeutic mechanisms. an nih white paper by the qsp workshop Group. 2011. Available from: http://www.nigms.nih.gov/training/documents/systemspharmawpsorger2011.pdf
  • Pittsburgh Workshop on Quantitative Systems Pharmacology (QSP) in Personalized Medicine (PM). 19 and 20 November 2013; Pittsburgh, PA. Available from: http://www.upddi.pitt.edu/uploads/Articles/QSP-PM%20workshop%20summary%202%20hyperlinked.pdf
  • Xue K; Harvard Magazine. Systematic drug discovery. 2013. Available from: http://harvardmagazine.com/2013/07/systematic-drug-discovery
  • Heller N; Harvard Magazine. Seeing biological systems whole. 2005. Available from: http://harvardmagazine.com/2005/03/seeing-biological-system-html
  • Nathan D; Harvard Magazine. A new prescription for drug development. 2011. Available from: http://harvardmagazine.com/2011/10/systems-pharmacology
  • Keiser MJ, Setola V, Irwin JJ, et al. Predicting new molecular targets for known drugs. Nature 2009;462:175-81
  • Pérez-Nueno VI, Ritchie DW. Identifying and characterizing promiscuous targets: Implications for virtual screening. Expert Opin Drug Discov 2012;7:1-17
  • Vicini P. Multiscale modeling in drug discovery and development: future opportunities and present challenges. Clin Pharmacol Ther 2010;88:126-9
  • Noble D. Modeling the heart-from genes to cells to the whole organ. Science 2002;295:1678-82
  • Sajan J, Cinu TA, Chacko AJ, et al. Chronotherapeutics and chronotherapeutic drug delivery systems. Tropical J Pharmaceutical Res 2009;8:467-75
  • Pérez-Nueno VI, Venkatraman V, Mavridis L, Ritchie DW. Predicting drug promiscuity using spherical harmonic (SH) shape-based similarity comparisons. The Open Conference Proceedings Journal 2011;2:113-29
  • Ekins S, Williams AJ. Finding promiscuous old drugs for new uses. Pharm Res 2011;28:1785-91
  • Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem 2014;57:7874-87
  • Reddy AS, Zhang S. Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol 2013;6:1-13
  • Keiser MJ, Irwin JJ, Shoichet BK. The chemical basis of pharmacology. Biochemistry 2010;49:10267-76
  • Merlot C. In silico methods for early toxicity assessment. Curr Opin Drug Discov Devel 2008;11:80-5
  • Campillos M, Kuhn M, Gavin AC, et al. Drug target identification using side-effect similarity. Science 2008;321:263-6
  • Pérez-Nueno VI, Souchet M, Karaboga AS, Ritchie DW. GESSE: predicting drug side effects from drug-target relationships. J Chem Inf Model 2015. [Epub ahead of print]
  • Fedorov O, Marsden B, Pogacic V, et al. A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci USA 2007;104:20523-8
  • Trubetskoy OV, Finel M, Kurkela M, et al. High throughput screening assay for UDP-glucuronosyltransferase 1A1 glucuronidation profiling. Assay Drug Dev Technol 2007;5:343-54
  • Nobeli I, Favia AD, Thornton JM. Protein promiscuity and its applications for biotechnology. Nat Biotechnol 2009;27:157-67
  • Cucurull-Sanchez L, Spink KG, Moschos SA. Relevance of systems pharmacology in drug discovery. Drug Discov Today 2012;17:665-70
  • Besnard J, Ruda GF, Setola V, et al. Automated design of ligands to polypharmacological profiles. Nature 2012;492:215-22
  • Pérez-Nueno VI, Venkatraman V, Mavridis L, Ritchie DW. Predicting drug polypharmacology using a novel surface property similarity-based approach. J Chemoinformatics 2011;3(Suppl 1):O19
  • Pérez-Nueno VI, Ritchie DW. Using consensus-shape clustering to identify promiscuous ligands and protein targets and to choose the right query for shape-based virtual screening. J Chem Inf Model 2011;51:1233-48
  • Pérez-Nueno VI, Ritchie DW, Borrell JI, Teixidó J. Clustering and classifying diverse HIV entry inhibitors using a novel consensus shape based virtual screening approach: Further evidence for multiple binding sites within the CCR5 extracellular pocket. J Chem Inf Model 2008;48:2146-65
  • Chong CR, Sullivan DJ. New uses for old drugs. Nature 2007;448:645-6
  • Achenbach J, Tiikkainen P, Franke L, Proschak E. Computational tools for polypharmacology and repurposing. Future Med Chem 2011;3:961-8
  • Rognan D. Chemogenomic approaches to rational drug design. Br J Pharmacol 2007;152:38-52
  • Grinter SZ, Liang Y, Huang SY, et al. An inverse docking approach for identifying new potential anti-cancer targets. J Mol Graph Model 2011;29:795-9
  • Kolb P, Ferreira RS, Irwin JJ, Shoichet BK. Docking and chemoinformatic screens for new ligands and targets. Curr Opin Biotechnol 2009;20:429-36
  • Zhao S, Iyengar R. Systems pharmacology: network analysis to identify multiscale mechanisms of drug action. Annu Rev Pharmacol Toxicol 2012;52:505-21
  • Boran AD, Iyengar R. Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Devel 2010;13:297-309
  • Boran AD, Iyengar R. Systems pharmacology. Mt Sinai J Med 2010;77:333-44
  • Nigsch F, Bender A, Jenkins JL, Mitchell JBO. Ligand target prediction using Winnow and naive Bayesian algorithms and the implications of overall performance statistics. J Chem Inf Model 2008;48:2313-25
  • Niijima S, Yabuuchi H, Okuno Y. Cross-target view to feature selection: identification of molecular interaction features in ligand-target space. J Chem Inf Model 2011;51:15-24
  • Takigawa I, Tsuda K, Mamitsuka H. Mining significant substructure pairs for interpreting polypharmacology in drug-target network. PLoS One 2011;6:e16999
  • Yamanishi Y, Araki M, Gutteridge A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics 2008;24:i232-40
  • Davis AP, Murphy CG, Rosenstein MC, et al. The Comparative Toxicogenomics Database facilitates identification and understanding of chemical-gene-disease associations: arsenic as a case study. BMC Med Genomics 2008;1:48-60
  • Carrascosa MC, Massaguer OL, Mestres J. Pharmatrek: a semantic web explorer for open innovation in multitarget drug discovery. Mol Inf 2012;31:537-41
  • Hirschman L, Burns GA, Krallinger M, et al. Text mining for the biocuration workflow. Database (Oxford) 2012;2012:bas020
  • Krallinger M, Leitner F, Vazquez M, et al. How to link ontologies and protein-protein interactions to literature: text-mining approaches and the BioCreative experience. Database (Oxford) 2012;2012:bas017
  • Dowell KG, Mcandrews-Hill MS, Hill DP, et al. Integrating text mining into the MGI biocuration workflow. Database (Oxford) 2009;2009:bap019
  • Wiegers TC, Davis AP, Cohen KB, et al. Text mining and manual curation of chemical-gene-disease networks for the comparative toxicogenomics database (CTD). BMC Bioinformatics 2009;10:326-38
  • Paolini GV, Shapland RHB, van Hoorn WP, et al. Global mapping of pharmacological space. Nat Biotechnology 2006;24:805-15
  • Meslamani J, Li J, Sutter J, et al. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling. J Chem Inf Model 2012;52:943-55
  • Milletti F, Vulpetti A. Predicting polypharmacology by binding site similarity: from kinases to the protein universe. J Chem Inf Model 2010;50:1418-31
  • Liu X, Jiang H, Li H. SHAFTS: a hybrid approach for 3D molecular similarity calculation. 1. method and assessment of virtual screening. J Chem Inf Model 2011;51:2372-85
  • AbdulHameed MDM, Chaudhury S, Singh N, et al. Exploring polypharmacology using a ROCS-based target fishing approach. J Chem Inf Model 2012;52:492-505
  • Pérez-Nueno VI, Venkatraman V, Mavridis L, Ritchie DW. Detecting drug promiscuity using gaussian ensemble screening. J Chem Inf Model 2012;52:1948-61
  • Karaboga AS, Petronin F, Marchetti G, et al. Benchmarking of HPCC: A novel 3D molecular representation combining shape and pharmacophoric descriptors for efficient molecular similarity assessments. J Mol Graph Model 2013;41:20-30
  • Simon Z, Peragovics A, Vigh-Smeller M, et al. Drug Effect Prediction by Polypharmacology-Based Interaction Profiling. J Chem Inf Model 2012;52:134-45
  • Yamanishi Y, Kotera M, Moriya Y, et al. DINIES: drug-target interaction network inference engine based on supervised analysis. Nucleic Acids Res 2014;42:W39-45
  • Pauwels E, Stoven V, Yamanishi Y. Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinformatics 2011;12:169
  • Mizutani S, Pauwels E, Stoven V, et al. Relating drug–protein interaction network with drug side effects. Bioinformatics 2012;28:i522-8
  • Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012;486:361-7
  • Cheng F, Liu C, Jiang J, et al. Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput Biol 2012;8:e1002503
  • Ravindranath AC, Perualila-Tan N, Kasim A, et al. Connecting gene expression data from connectivity map and in silico target predictions for small molecule mechanism-of-action analysis. Mol BioSyst 2015;11:86-96
  • Carrieri A, Pérez-Nueno VI, Lentini G, Ritchie DW. Recent trends and future prospects in computational GPCR drug discovery: from virtual screening to polypharmacology. Curr Top Med Chem 2013;13:1069-97
  • Nettles JH, Jenkins JL, Bender A, et al. Bridging chemical and biological space: “target fishing” using 2D and 3D molecular descriptors. J Med Chem 2006;49:6802-10
  • Nettles JH, Jenkins JL, Williams C, et al. Flexible 3D pharmacophores as descriptors of dynamic biological space. J Mol Graph Model 2007;26:622-33
  • Kinnings SL, Jackson RM. ReverseScreen3D: a structurebased ligand matching method to identify protein targets. J Chem Inf Model 2011;51:624-34
  • Weill N, Rognan D. Development and validation of a novel protein–ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands. J Chem Inf Model 2009;49:1049-62
  • Keiser MJ, Roth BL, Armbruster BN, et al. Relating protein pharmacology by ligand chemistry. Nat Biotechnol 2007;25:197-206
  • Hert J, Keiser MJ, Irwin JJ, et al. Quantifying the relationships among drug classes. J Chem Inf Model 2008;48:755-65
  • Gregori-Puigjane E, Mestres J. SHED: Shannon entropy descriptors from topological feature distributions. J Chem Inf Model 2006;46:1615-22
  • Delgado-Soler L, Toral R, Tomas MS, Rubio-Martinez J. RED: a set of molecular descriptors based on Renyi entropy. J Chem Inf Model 2009;49:2457-68
  • Vidal D, Mestres J. In silico receptorome screening of antipsychotic drugs. Mol Inf 2010;29:543-51
  • Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 2010;53:2719-40
  • Huth JR, Mendoza R, Olejniczak ET, et al. ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. J Am Chem Soc 2005;127:217-24
  • Feng BY, Shoichet BK. A detergent-based assay for the detection of promiscuous inhibitors. Nat Protoc 2006;1:550-3
  • Steindl TM, Schuster D, Laggner C, Langer T. Parallel screening: A novel concept in pharmacophore modeling and virtual screening. J Chem Inf Model 2006;46:2146-57
  • Liu X, Ouyang S, Yu B, et al. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 2010;38:W609-14
  • Arnold R, Rattei T, Tischler P, et al. Simap-the similarity matrix of proteins. Bioinformatics 2005;21:42-6
  • Altschul SA, Madden TL, Schaffer A, et al. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-402
  • Pearson WR. Rapid and sensitive sequence comparison with fastp and fasta. Methods Enzymol 1990;183:63-98
  • Weskamp N, Hüllermeier E, Klebe G. Merging chemical and biological space: Structural mapping of enzyme binding pocket space. Proteins 2009;76:317-30
  • Pauwels E, Stoven V, Yamanishi Y. Predicting drug side-effect profiles: a chemical fragment-based approach. BMC Bioinformatics 2011;12:169-82
  • Mizutani S, Pauwels E, Stoven V, et al. Relating drug-protein interaction network with drug side effects. Bioinformatics 2012;28:i522-8
  • Atias N, Sharan R. An algorithmic framework for predicting side effects of drugs. J Comput Biol 2011;18:207-18
  • Nidhi Glick M, Davies JW, et al. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J Chem Inf Model 2006;46:1124-33
  • Zhao S, Li S. Network-based relating pharmacological and genomic spaces for drug target identification. PLoS One 2010;5:e11764
  • Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern 1982;43:59-69
  • Yabuuchi H, Niijima S, Takematsu H, et al. Analysis of multiple compound-protein interactions reveals novel bioactive molecules. Mol Syst Biol 2011;7:472-84
  • Faulon JL, Misra M, Martin S, et al. Genome scale enzyme-metabolite and drug-target interaction predictions using the signature molecular descriptor. Bioinformatics 2008;24:225-33
  • Wassermann AM, Geppert H, Bajorath J. Ligand prediction for orphan targets using support vector machines and various targetligand kernels is dominated by nearest neighbor effects. J Chem Inf Model 2009;49:2155-67
  • Pérez-Nueno VI, Karaboga AS, Souchet M, Ritchie DW. GES polypharmacology fingerprints: A novel approach for drug repositioning. J Chem Inf Model 2014;54:720-34
  • Meslamani J, Bhajun R, Martz F, et al. Computational profiling of bioactive compounds using a target-dependent composite workflow. J Chem Inf Model 2013;53:2322-33
  • Csermely P, Korcsmáros T, Kiss HJM, et al. Structure and dynamics of molecular networks: A novel paradigm of drug discovery: A comprehensive review. Pharmacol Ther 2013;138:333-408
  • Mestres J, Gregori-Puigjané E, Valverde S, Solé RV. The topology of drug-target interaction networks: implicit dependence on drug properties and target families. Mol BioSyst 2009;5:1051-7
  • Huang C, Zheng C, Li Y, et al. Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief Bioinform 2014;15:710-33
  • Liu H, Wang J, Zhou Z, et al. Systems approaches and polypharmacology for drug discovery from herbal medicines: An example using licorice. J Ethnopharmacol 2013;146:773-93
  • Li P, Chen J, Wang J, et al. Systems pharmacology strategies for drug discovery and combination with applications to cardiovascular diseases. J Ethnopharmacol 2014;151:93-107
  • Li P, Fu Y, Ru J, et al. Insights from systems pharmacology into cardiovascular drug discovery and therapy. BMC Syst Biol 2014;8:141-54
  • Yang H, Zhang W, Huang C, et al. A novel systems pharmacology model for herbal medicine injection: a case using reduning injection. BMC Complement Altern Med 2014;14:430-49
  • Lin H, Sassano MF, Roth BL, Shoichet BK. A pharmacological organization of G protein-coupled receptors. Nat Methods 2013;10:140-6
  • Lee MJ, Ye AS, Gardino AK, et al. Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 2012;149:780-94
  • Pritchard JR, Bruno PM, Hemann MT, Lauffenburger DA. Predicting cancer drug mechanisms of action using molecular network signatures. Mol BioSyst 2013;9:1604-19
  • Terstappen GC, Schlüpen C, Raggiaschi R, Gaviraghi G. Target deconvolution strategies in drug discovery. Nat Rev Drug Discov 2007;6:891-903
  • Gujral TS, Peshkin L, Kirschner MW. Exploiting polypharmacology for drug target deconvolution. PNAS 2014;111:5048-53
  • Ryall KA, Tan AC. Systems biology approaches for advancing the discovery of effective drug combinations. J Chemioinform 2015;7:7
  • Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet 2000;356:1255-9
  • Giacomini KM, Krauss RM, Roden DM, et al. When good drugs go bad. Nature 2007;446:975-7
  • Duran-Frigola M, Aloy P. Analysis of chemical and biological features yields mechanistic insights into drug side effects. Chem Biol 2013;20:594-603
  • Serna RG, Mestres J. Anticipating drug side effects by comparative pharmacology. Expert Opin Drug Metab Toxicol 2010;6:1253-63
  • Bylund DB, Toews ML. Quantitative versus qualitative data: The numerical dimensions of drug action. Biochem Pharmacol 2013;87:25-39
  • Lau KS, Cortez-Retamozo V, Philips SR, et al. Multi-scale in vivo systems analysis reveals the influence of immune cells on TNFa-induced apoptosis in the intestinal epithelium. PLoS Biol 2012;10:e1001393
  • Prat A, Ellis MJ, Perou CM. Practical implications of gene expression-based assays for breast oncologists. Nat Rev Clin Oncol 2011;9:48-57
  • Lee S, Lee KH, Song M, Lee D. Building the process-drug-side effect network to discover the relationship between biological processes and side effects. BMC Bioinformatics 2011;12(Suppl 2):S2
  • Cheng F, Li W, Wu Z, et al. Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space. J Chem Inf Model 2013;53:753-62
  • Yang L, Agarwal P. Systematic drug repositioning based on clinical side-effects. PLoS One 2011;6:e28025
  • Scheiber J, Chen B, Milik M, et al. Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis. J Chem Inf Model 2009;49:308-17
  • Xie L, Li J, Xie L, Bourne P. Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLoS Comput Biol 2009;5:e1000387
  • Wallach I, Jaitly S, Lilien R. A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways. PLoS One 2010;5:e12063
  • Takarabe M, Shigemizu D, Kotera M, et al. Network-based analysis and characterization of adverse drug-drug interactions. J Chem Inf Model 2011;51:2977-85
  • Takarabe M, Kotera M, Nishimura Y, et al. Drug target prediction using adverse event report systems: a pharmacogenomic approach. Bioinformatics 2012;28:i611-18
  • Scheiber J, Jenkins J, Sukuru S, et al. Mapping adverse drug reactions in chemical space. J Med Chem 2009;52:3103-7
  • Yamanishi Y, Kotera M, Kanehisa M, Goto S. Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 2010;26:i246-54
  • Yamanishi Y, Pauwels E, Kotera M. Drug side-effect prediction based on the integration of chemical and biological spaces. J Chem Inf Model 2012;52:3284-92
  • Atias N, Sharan R. An algorithmic framework for predicting side effects of drugs. J Comput Biol 2011;18:207-18
  • Miller R, Ewy W, Corrigan BW, et al. How modeling and simulation have enhanced decision making in new drug development. J Pharmacokinet Pharmacodyn 2005;32:185-97
  • Real PJ, Tosello V, Palomero T, et al. Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 2009;15:50-8
  • Giacomini KM, Yee SW, Ratain MJ, et al. Pharmacogenomics and patient care: One size does not fit all. Sci Transl Med 2012;4:153ps18
  • Phillips KA, Veenstra DL, Oren E, et al. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 2001;286:2270-9
  • Wren JD, Bekeredjian R, Stewart JA, et al. Knowledge discovery by automated identification and ranking of implicit relationships. Bioinformatics 2004;20:389-98
  • Hui-Fang L, Qing S, Jian Z, Wei F. Evaluation of various inverse docking schemes in multiple targets identification. J Mol Graph Model 2010;29:326-30
  • Cheng T, Li Q, Zhou Z, et al. Structure-based virtual screening for drug discovery: a problem-centric review. Aaps J 2012;14:133-41
  • Wiegers TC, Davis AP, Cohen KB, et al. Text mining and manual curation of chemical-gene-disease networks for the comparative toxicogenomics database (CTD). BMC Bioinformatics 2009;10:326
  • Lamb J, Crawford ED, Peck D, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006;313:1929-35
  • Allison M. NCATS launches drug repurposing program. Nat Biotechnol 2012;30:571-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.