848
Views
80
CrossRef citations to date
0
Altmetric
Reviews

Quantitative structure–activity relationship: promising advances in drug discovery platforms

, , &

Bibliography

  • Organization WH. Antimicrobial resistance: global report on surveillance. World Health Organization; 2014
  • Johnson VA, Calvez V, Günthard HF, et al. 2011 update of the drug resistance mutations in HIV-1. Top Antivir Med 2011;19:156-64
  • Pfaller MA. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 2012;125:S3-S13
  • Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol 2010;46:308-16
  • DiMasi JA, Feldman L, Seckler A, et al. Trends in risks associated with new drug development: success rates for investigational drugs. Clin Pharmacol Ther 2010;87:272-7
  • Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer research. Nature 2012;483:531-3
  • Hait WN. Anticancer drug development: the grand challenges. Nat Rev Drug Discov 2010;9:253-4
  • Vijayakrishnan R. Structure-based drug design and modern medicine. J Postgrad Med 2009;55:301-4
  • Talele TT, Khedkar SA, Rigby AC. Successful applications of computer aided drug discovery: moving drugs from concept to the clinic. Curr Top Med Chem 2010;10:127-41
  • Van Drie JH. Computer-aided drug design: the next 20 years. J Comput Aided Mol Des 2007;21:591-601
  • Jorgensen WL. The many roles of computation in drug discovery. Science 2004;303:1813-18
  • Kitchen DB, Decornez H, Furr JR, et al. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004;3:935-49
  • Clark DE, Pickett SD. Computational methods for the prediction of ‘drug-likeness’. Drug Discov Today 2000;5:49-58
  • Eagling V, Back D, Barry M. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol 1997;44:190-4
  • Hartman GD, Egbertson MS, Halczenko W, et al. Non-peptide fibrinogen receptor antagonists. 1. Discovery and design of exosite inhibitors. J Med Chem 1992;35:4640-2
  • Gehlhaar DK, Moerder KE, Zichi D, et al. De novo design of enzyme inhibitors by Monte Carlo ligand generation. J Med Chem 1995;38:466-72
  • Sawyer JS, Anderson BD, Beight DW, et al. Synthesis and activity of new aryl-and heteroaryl-substituted pyrazole inhibitors of the transforming growth factor-β type I receptor kinase domain. J Med Chem 2003;46:3953-6
  • Shekhar C. In silico pharmacology: computer-aided methods could transform drug development. Chem Biol 2008;15:413-14
  • Balakrishnan A, Polli JE. Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Mol Pharm 2006;3:223-30
  • Zhong S, Macias AT, MacKerell AD. Computational identification of inhibitors of protein-protein interactions. Curr Top Med Chem 2007;7:63-82
  • Chen F, Hancock CN, Macias AT, et al. Characterization of ATP-independent ERK inhibitors identified through in silico analysis of the active ERK2 structure. Bioorg Med Chem Lett 2006;16:6281-7
  • Matthews TP, Jones AM, Collins I. Structure-based design, discovery and development of checkpoint kinase inhibitors as potential anticancer therapies. Expert Opin Drug Discov 2013;8:621-40
  • Cain R, Narramore S, McPhillie M, et al. Applications of structure-based design to antibacterial drug discovery. Bioorg Chem 2014;55:69-76
  • Du J, Cross TA, Zhou HX. Recent progress in structure-based anti-influenza drug design. Drug Discov Today 2012;17:1111-20
  • Claffey MM, Helal CJ, Verhoest PR, et al. Application of structure-based drug design and parallel chemistry to identify selective, brain penetrant, in vivo active phosphodiesterase 9A inhibitors. J Med Chem 2012;55:9055-68
  • Roche O, Sarmiento RM. A new class of histamine H3 receptor antagonists derived from ligand based design. Bioorg Med Chem Lett 2007;17:3670-5
  • Nandi S, Bagchi MC. 3D-QSAR and molecular docking studies of 4-anilinoquinazoline derivatives: a rational approach to anticancer drug design. Mol Divers 2010;14:27-38
  • Swann SL, Brown SP, Muchmore SW, et al. A unified, probabilistic framework for structure- and ligand-based virtual screening. J Med Chem 2011;54:1223-32
  • Noh SM, Atanasov AG, Schuster D, et al. Discovery of a novel IKK-b inhibitor by ligand-based virtual screening techniques. Bioorg Med Chem Lett 2011;21:577-83
  • Neves BJ, Bueno RV, Braga RC, et al. Discovery of new potential hits of Plasmodium falciparum enoyl-ACP reductase through ligand- and structure-based drug design approaches. Bioorg Med Chem Lett 2013;23:2436-41
  • Johnson MA, Maggiora GM. Concepts and applications of molecular similarity. Wiley; New York: 1990
  • Sliwoski G, Kothiwale S, Meiler J, et al. Computational Methods in Drug Discovery. Pharmacol Rev 2014;66:334-95
  • Sheridan RP, Kearsley SK. Why do we need so many chemical similarity search methods? Drug Discov Today 2002;7:903-11
  • Bender A, Glen RC. Molecular similarity: a key technique in molecular informatics. Org Biomol Chem 2004;2:3204-18
  • Maldonado AG, Doucet J, Petitjean M, et al. Molecular similarity and diversity in chemoinformatics: from theory to applications. Mol Divers 2006;10:39-79
  • Geppert H, Vogt M, Bajorath J. Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model 2010;50:205-16
  • Kim KH, Kim ND, Seong BL. Pharmacophore-based virtual screening: a review of recent applications. Expert Opin Drug Discov 2010;5:205-22
  • Lee CH, Huang HC, Juan HF. Reviewing ligand-based rational drug design: the search for an ATP synthase inhibitor. Int J Mol Sci 2011;12:5304-18
  • Ripphausen P, Nisius B, Bajorath J. State-of-the-art in ligand-based virtual screening. Drug Discov Today 2011;16:372-6
  • Hansch C, Fujita T. p-σ-π Analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 1964;86:1616-26
  • Handen JS. The industrialization of drug discovery. Drug Discov Today 2002;7:83-5
  • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 2012.40:1100-7
  • C hEMBL. Available fromml: www.ebi.ac.uk/chembl
  • Butkiewicz MJr, Mueller R, et al. Benchmarking ligand-based virtual high-throughput screening with the PubChem database. Molecules 2013.18:735-56
  • PubChem. http://pubchem.ncbi.nlm.nih.gov/
  • Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 2005;4:649-63
  • Todeschini R, Consonni V. Handbook of molecular descriptors. John Wiley & Sons; New York: 2008. p. 11
  • Pearlman RS, Smith KM. Metric validation and the receptor-relevant subspace concept. J Chem Inf Compu Sci 1999;39:28-35
  • Hong H, Xie Q, Ge W, et al. Mold2, molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics. J Chem Inf Model 2008;48:1337-44
  • Todeschini R, Consonni V. Molecular Descriptors for Chemoinformatics. 2 Volume Set John Wiley & Sons; Chichester: 2009. 41
  • Bauerschmidt S, Gasteiger J. Overcoming the limitations of a connection table description: A universal representation of chemical species. J Chem Inf Compu Sci 1997;37:705-14
  • Glen RC. A fast empirical method for the calculation of molecular polarizability. J Comput Aided Mol Des 1994;8:457-66
  • Wang R, Gao Y, Lai L. Calculating partition coefficient by atom-additive method. Perspect Drug Discov Des 2000;19:47-66
  • Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol 2007;152:9-20
  • Martínez-Santiago O, Millán-Cabrera R, Marrero-Ponce Y, et al. Discrete derivatives for atom-pairs as a novel graph-theoretical invariant for generating new molecular descriptors: orthogonality, interpretation and QSARs/QSPRs on benchmark databases. Mol Inform 2014;33:343-68
  • Ortega-Broche SE, Marrero-Ponce Y, Díaz YE, et al. Tomocomd-camps and protein bilinear indices – novel bio-macromolecular descriptors for protein research: I. Predicting protein stability effects of a complete set of alanine substitutions in the Arc repressor. Febs Journal 2010;277:3118-46
  • Randić M. Generalized molecular descriptors. J Math Chem 1991;7:155-68
  • Bajorath J. Chemoinformatics: concepts, methods, and tools for drug discovery. Springer Science & Business Media: Totowa, NJ: 2004. 275
  • Acharya C, Coop A, Polli JE, et al. Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aided Drug Des 2011;7:10-22
  • Basheer I, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 2000;43:3-31
  • Wold S, Esbensen K, Geladi P. Principal component analysis. Chemometrics Intellig Lab Syst 1987;2:37-52
  • Kubinyi H. QSAR and 3D QSAR in drug design Part 1: methodology. Drug Discov Today 1997;2:457-67
  • Geladi P, Kowalski BR. Partial least-squares regression: a tutorial. Anal Chim Acta 1986;185:1-17
  • Chang C, Swaan PW. Computational approaches to modeling drug transporters. Eur J Pharm Sci 2006;27:411-24
  • Kubinyi H. 3D QSAR in drug design: volume 1: theory methods and applications. Springer Science & Business Media; Totowa, NJ: 1993. 1
  • Cramer RD, Patterson DE, Bunce JD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 1988;110:5959-67
  • Klebe G, Abraham U, Mietzner T. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 1994;37:4130-46
  • Hechinger M, Leonhard K, Marquardt W. What is Wrong with Quantitative Structure–Property Relations Models Based on Three-Dimensional Descriptors? J Chem Inf Model 2012;52:1984-93
  • Flower DR. Drug Design: Cutting Edge Approaches. Royal Society of Chemistry 2002;279
  • Klebe G, Abraham U. Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J Comput Aided Mol Des 1999;13:1-10
  • Bernard D, Coop A, MacKerell AD. 2D Conformationally sampled pharmacophore: A ligand-based pharmacophore to differentiate δ opioid agonists from antagonists. J Am Chem Soc 2003;125:3101-7
  • Bernard D, Coop A, MacKerell AD. Quantitative conformationally sampled pharmacophore for δ opioid ligands: reevaluation of hydrophobic moieties essential for biological activity. J Med Chem 2007;50:1799-809
  • Nicklaus MC, Wang S, Driscoll JS, et al. Conformational changes of small molecules binding to proteins. Biorg Med Chem 1995;3:411-28
  • Leach AR. Molecular modelling: principles and applications. Pearson Education; Harlow, England: 2001
  • Ghose A, Jaeger E, Kowalczyk P, et al. Conformational searching methods for small molecules. I. Study of the SYBYL SEARCH Method. J Comput Chem 1993;14:1050-65
  • Lipton M, Still WC. The multiple minimum problem in molecular modeling. Tree searching internal coordinate conformational space. J Comput Chem 1988;9:343-55
  • Chen IJ, Foloppe N. Conformational sampling of drug-like molecules with MOE and catalyst: implications for pharmacophore modeling and virtual screening. J Chem Inf Model 2008;48:1773-91
  • Ferguson DM, Raber DJ. A new approach to probing conformational space with molecular mechanics: random incremental pulse search. J Am Chem Soc 1989;111:4371-8
  • Blaney JM, Dixon JS. Distance geometry in molecular modeling. Rev Comput Chem 2007;5:299-335
  • Nair N, Goodman JM. Genetic algorithms in conformational analysis. J Chem Inf Comput Sci 1998;38:317-20
  • Corcho FJ, Filizola M, Pérez JJ. Evaluation of the iterative simulated annealing technique in conformational search of peptides. Chem Phys Lett 2000;319:65-70
  • Guarnieri F, Weinstein H. Conformational memories and the exploration of biologically relevant peptide conformations: an illustration for the gonadotropin-releasing hormone. J Am Chem Soc 1996;118:5580-9
  • Cvijovic D, Klinowski J. Taboo search: an approach to the multiple minima problem. Science 1995;267:664-6
  • Acharya C, Coop A, Polli JE, et al. Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aided Drug Des 2011;7:10-22
  • Vedani A, Briem H, Dobler M, et al. Multiple-conformation and protonation-state representation in 4D-QSAR: the neurokinin-1 receptor system. J Med Chem 2000;43:4416-27
  • Ekins S, Bravi G, Binkley S, et al. Three-and four-dimensional-quantitative structure activity relationship (3D/4D-QSAR) analyses of CYP2C9 inhibitors. Drug Metab Disposition 2000;28:994-1002
  • Lill MA. Multi-dimensional QSAR in drug discovery. Drug Discov Today 2007;12:1013-17
  • Hopfinger A, Wang S, Tokarski JS, et al. Construction of 3D-QSAR models using the 4D-QSAR analysis formalism. J Am Chem Soc 1997;119:10509-24
  • Hopfinger A. Inhibition of dihydrofolate reductase: structure-activity correlations of 2, 4-diamino-5-benzylpyrimidines based upon molecular shape analysis. J Med Chem 1981;24:818-22
  • Albuquerque MG, Hopfinger AJ, Barreiro E, et al. Four-dimensional quantitative structure-activity relationship analysis of a series of interphenylene 7-oxabicycloheptane oxazole thromboxane A2 receptor antagonists. J Chem Inf Computr Sci 1998;38:925-38
  • Andrade CH, Pasqualoto KF, Ferreira EI, et al. Rational design and 3D-pharmacophore mapping of 5’-thiourea-substituted alpha-thymidine analogues as mycobacterial TMPK inhibitors. J Chem Inf Model 2009;49:1070-8
  • Liu J, Pan D, Tseng Y, et al. 4D-QSAR analysis of a series of antifungal p450 inhibitors and 3D-pharmacophore comparisons as a function of alignment. J Chem Inf Comput Sci 2003;43:2170-9
  • Krasowski MD, Hong X, Hopfinger A, et al. 4D-QSAR analysis of a set of propofol analogues: mapping binding sites for an anesthetic phenol on the GABAA receptor. J Med Chem 2002;45:3210-21
  • González-Díaz H, Prado-Prado FJ, Santana L, et al. Unify QSAR approach to antimicrobials. Part 1: predicting antifungal activity against different species. Bioorg Med Chem 2006;14:5973-80
  • Zanni R, Galvez-Llompart M, Galvez J, et al. QSAR multi-target in drug discovery: a review. Curr Comput Aided Drug Des 2014;10:129-36
  • Garcia I, Fall Y, Gomez G, Gonzalez-Diaz H. First computational chemistry multi-target model for anti-Alzheimer, anti-parasitic, anti-fungi, and anti-bacterial activity of GSK-3 inhibitors in vitro, in vivo, and in different cellular lines. Mol Divers 2011;15:561-7
  • Marzaro G, Chilin A, Guiotto A, et al. Using the TOPS-MODE approach to fit multi-target QSAR models for tyrosine kinases inhibitors. Eur J Med Chem 2011;46:2185-92
  • Prado-Prado FJ, García I, García-Mera X, et al. Entropy multi-target QSAR model for prediction of antiviral drug complex networks. Chemometr Intell Lab 2011;107:227-33
  • Prado-Prado FJ. Multi-target spectral moment: QSAR for antiviral drugs vs. different viral species. Anal Chim Acta 2009;651:159-64
  • Roy K, Roy PP. Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques. Eur J Med Chem 2009;44:2913-22
  • Tenorio-Borroto E, Pe09uelas Rivas CG, et al. ANN multiplexing model of drugs effect on macrophages; theoretical and flow cytometry study on the cytotoxicity of the anti-microbial drug G1 in spleen. Bioorg Med Chem 2012;20:6181-94
  • Sugaya N. Ligand efficiency-based support vector regression models for predicting bioactivities of ligands to drug target proteins. J Chem Inf Model 2014;54:2751-63
  • Heikamp K, Bajorath J. Support vector machines for drug discovery. Expert Opin Drug Discov 2014;9:93-104
  • Hu YJ, Ku TH, Jan RH, et al. Decision tree-based learning to predict patient controlled analgesia consumption and readjustment. BMC Med Inform Decis Mak 2012;12:131
  • Tetko IV, Sushko I, Pandey AK, et al. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. J Chem Inf Model 2008;48:1733-46
  • Benigni R, Bossa C. Predictivity of QSAR. J Chem Inf Model 2008;48:971-80
  • Cao DS, Liang YZ, Xu QS, et al. A new strategy of outlier detection for QSAR/QSPR. J Comput Chem 2010;31:592-602
  • Zhang Y, Meratnia N, Havinga P. Outlier detection techniques for wireless sensor networks: A survey. Communications Surveys & Tutorials. IEEE 2010;12:159-70
  • Subramaniam S, Palpanas T, Papadopoulos D, et al. Online outlier detection in sensor data using non-parametric models. In Proceedings of the 32nd international conference on Very large data bases. VLDB Endowment 2006. p. 187-98
  • Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Comb Sci 2003;22:69-77
  • Kohavi R. In a study of cross-validation and bootstrap for accuracy estimation and model selection. Ijcai 1995;1137-45
  • Weiss S, Kulikowski C. Computer systems that learn. Morgan Kaufmann, San Mateo, California: 1991
  • Cronin MT. Predicting chemical toxicity and fate. CRC press. CRC Press, Boca Raton, Florida: 2004
  • Golbraikh A, Tropsha A, Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Mol Divers 2000;5:231-43
  • Gramatica P, Papa E. QSAR modeling of bioconcentration factor by theoretical molecular descriptors. QSAR & Comb Sci 2003;22:374-85
  • Gramatica P, Pilutti P, Papa E. QSAR prediction of ozone tropospheric degradation. QSAR & Comb Sci 2003;22:364-73
  • Roy K, Mitra I, Kar S, et al. Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 2012;52:396-408
  • Mitra I, Roy PP, Kar S, et al. On further application of r m2 as a metric for validation of QSAR models. J Chemometrics 2010;24:22-33
  • Tropsha A, Golbraikh A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 2007;13:3494-504
  • Narayana Moorthy NS, Ramos MJ, et al. Comparative structural analysis of alpha-glucosidase inhibitors on difference species: a computational study. Arch Pharm (Weinheim) 2012;345:265-74
  • Zhang L, Zhu H, Oprea TI, et al. QSAR modeling of the blood-brain barrier permeability for diverse organic compounds. Pharm Res 2008;25:1902-14
  • Chen B, Sheridan RP, Hornak V, et al. Comparison of random forest and Pipeline Pilot Naive Bayes in prospective QSAR predictions. J Chem Inf Model 2012;52:792-803
  • Sheridan RP. Time-split cross-validation as a method for estimating the goodness of prospective prediction. J Chem Inf Model 2013;53:783-90
  • Medina-Franco JL, Golbraikh A, Oloff S, et al. Quantitative structure–activity relationship analysis of pyridinone HIV-1 reverse transcriptase inhibitors using the k nearest neighbor method and QSAR-based database mining. J Comput Aided Mol Des 2005;19:229-42
  • Oloff S, Mailman RB, Tropsha A. Application of validated QSAR models of D1 dopaminergic antagonists for database mining. J Med Chem 2005;48:7322-32
  • Zhang S, Wei L, Bastow K, et al. Antitumor agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents. J Comput Aided Mol Des 2007;21:97-112
  • Zhang L, Fourches D, Sedykh A, et al. Discovery of novel antimalarial compounds enabled by QSAR-based virtual screening. J Chem Inf Model 2013;53:475-92
  • Zhang L, Sedykh A, Tripathi A, et al. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR-and structure-based virtual screening approaches. Toxicol Appl Pharmacol 2013;272:67-76
  • Golla S, Neely BJ, Whitebay E, et al. Virtual design of chemical penetration enhancers for transdermal drug delivery. Chem Biol Drug Des 2012;79:478-87
  • Puzyn T, Leszczynski J, Cronin MT. Recent advances in QSAR studies: methods and applications. Springer Science & Business Media; New York: 2010. p. 8
  • Polishchuk PG, Muratov EN, Artemenko AG, et al. Application of random forest approach to QSAR prediction of aquatic toxicity. J Chem Inf Model 2009;49:2481-8
  • Cronin MT, Jaworska JS, Walker JD, et al. Use of QSARs in international decision-making frameworks to predict health effects of chemical substances. Environ Health Perspect 2003;111:1391
  • Xu S, Nirmalakhandan N. Use of QSAR models in predicting joint effects in multi-component mixtures of organic chemicals. Water Res 1998;32:2391-9
  • Junghans M, Backhaus T, Faust M, et al. Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Manage Sci 2003;59:1101-10
  • Shao X, Li Z, Qian X, et al. Design, synthesis, and insecticidal activities of novel analogues of neonicotinoids: replacement of nitromethylene with nitroconjugated system. J Agric Food Chem 2009;57:951-7
  • Montesinos E, Bardaji E. Synthetic Antimicrobial Peptides as Agricultural Pesticides for Plant-Disease Control. Chem Biodivers 2008;5:1225-37
  • Kirchmair J, Williamson MJ, Tyzack JD, et al. Computational prediction of metabolismml: sites, products, SAR, P450 enzyme dynamics, and mechanisms. J Chem Inf Model 2012;52:617-48
  • Chohan KK, Paine SW, Waters NJ. Quantitative structure activity relationships in drug metabolism. Curr Top Med Chem 2006;6:1569-78
  • Braga R, Andrade H. QSAR and QM/MM approaches applied to drug metabolism prediction. Mini Rev Med Chem 2012;12:573-82
  • Maggiora GM. On outliers and activity cliffs why QSAR often disappoints. J Chem Inf Model 2006;46:1535-5
  • Cronin MT, Schultz TW. Pitfalls in QSAR. J Mol Struc: THEOCHEM 2003;622:39-51
  • Johnson SR. The trouble with QSAR (or how I learned to stop worrying and embrace fallacy). J Chem Inf Model 2008;48:25-6
  • Hasegawa K, Arakawa M, Funatsu K. Rational choice of bioactive conformations through use of conformation analysis and 3-way partial least squares modeling. Chemometrics Intellig Lab Syst 2000;50:253-61
  • Coats EA. The CoMFA steroids as a benchmark dataset for development of 3D QSAR methods. In: 3D QSAR in drug design. Springer; San Diego, CA: 1998. p. 199-213
  • Medina-Franco JL, Yongye AB, López-Vallejo F. Consensus models of activity landscapes. Stat Mod Mol Descrip QSAR/QSPR 2012;2:307-26
  • Cruz-Monteagudo M, Medina-Franco JL, Perez-Castillo Y, et al. Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discov Today 2014;19:1069-80
  • Dearden J, Cronin M, Kaiser K. How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR). SAR QSAR Environ Res 2009;20:241-66
  • Oprea T. 3D QSAR modeling in drug design. Comput Med Chem Drug Discov 2004;571-616
  • Sheridan RP. Time-split cross-validation as a method for estimating the goodness of prospective prediction. J Chem Inf Model 2013;53:783-90
  • Netzeva TI, Worth AP, Aldenberg T, et al. Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. ATLA 2005;33:155-73
  • Sahigara F, Mansouri K, Ballabio D, et al. Comparison of different approaches to define the applicability domain of QSAR models. Molecules 2012;17:4791-810
  • Hartung T, Bremer S, Casati S, et al. A modular approach to the ECVAM principles on test validity. Altern Lab Anim 2004. 32:467-72
  • Free SM, Wilson JW. A mathematical contribution to structure-activity studies. J Med Chem 1964;7:395-9
  • Dwivedi N, Mishra BN, Katoch VM. 2D-QSAR model development and analysis on variant groups of anti-tuberculosis drugs. Bioinformation 2011;7:82-90
  • Sharma MC, Sharma S. 2D-QSAR Study of 7-methyljuglone derivatives: an approach to design antitubercular agents. J Pharmacol Toxicol 2011;6:493-504
  • Sharma R, Panigrahi D, Mishra GP. QSAR studies of 7-methyljuglone derivatives as antitubercular agents. Med Chem Res 2012;21:2006-11
  • Marrero-Ponce Y, Martínez-Albelo ER, Casañola-Martín GM, et al. Bond-based linear indices of the non-stochastic and stochastic edge-adjacency matrix. 1. Theory and modeling of ChemPhys properties of organic molecules. Mol Divers 2010;14:731-53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.