969
Views
10
CrossRef citations to date
0
Altmetric
Review

Polyethyleneimine (PEI) as a Polymer-Based Co-Delivery System for Breast Cancer Therapy

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 71-83 | Published online: 08 Apr 2022

References

  • Hassanpour SH, Dehghani MA. Review of cancer from perspective of molecular. J Cancer Res Pract. 2017;4:127–129. doi:10.1016/j.jcrpr.2017.07.001
  • Zubair M, Wang S, Ali N. Advanced approaches to breast cancer classification and diagnosis. Front Pharmacol. 2021;11:1–24. doi:10.3389/fphar.2020.632079
  • Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501:328–337. doi:10.1038/nature12624
  • Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Br J Cancer. 2013;108:479–485. doi:10.1038/bjc.2012.581
  • Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575(7782):299–309. doi:10.1038/s41586-019-1730-1
  • Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(1):1–19. doi:10.1038/s41392-017-0004-3
  • Mokhtari RB, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer systematic review: combination therapy in combating cancer background. Oncotarget. 2017;8(23):38022–38043.
  • Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141–160. doi:10.20517/cdr.2019.10
  • Yao Y, Zhou Y, Liu L, et al. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front Mol Biosci. 2020;7:1–14. doi:10.3389/fmolb.2020.00193
  • Zylberberg C, Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23(9):3319–3329. doi:10.1080/10717544.2016.1177136
  • Amreddy N, Babu A, Muralidharan R, et al. Recent Advances in Nanoparticle-Based Cancer Drug and Gene Delivery. Vol. 137. 1st ed. Elsevier Inc.; 2018. doi:10.1016/bs.acr.2017.11.003
  • Sharma S, Pukale SS, Sahel DK, et al. Folate-targeted cholesterol-grafted lipo-polymeric nanoparticles for chemotherapeutic agent delivery. AAPS Pharm Sci Tech. 2020;21(7):1–21. DOI:10.1208/s12249-020-01812-y
  • Park K. Biomaterials for Cancer Therapeutics. Woodhead Publishing; 2014. doi:10.1533/9780857096760
  • Meleshko AN, Petrovskaya NA, Savelyeva N, Vashkevich KP, Doronina SN, Sachivko NV. Phase I clinical trial of idiotypic DNA vaccine administered as a complex with polyethylenimine to patients with B-cell lymphoma. Hum Vaccines Immunother. 2017;13(6):1398–1403. doi:10.1080/21645515.2017.1285477
  • Sun H, Yarovoy I, Capeling M, Cheng C. Polymers in the co-delivery of siRNA and anticancer drugs for the treatment of drug-resistant cancers. Top Curr Chem. 2017;375(2):1–30. doi:10.1007/s41061-017-0113-z
  • Hashemi M, Shamshiri A, Saeedi M, Tayebi L, Yazdian-Robati R. Aptamer-conjugated PLGA nanoparticles for delivery and imaging of cancer therapeutic drugs. Arch Biochem Biophys. 2020;691:108485. doi:10.1016/j.abb.2020.108485
  • Ryu JH, Yoon HY, Sun IC, Kwon IC, Kim K. Tumor-targeting glycol chitosan nanoparticles for cancer heterogeneity. Adv Mater. 2020;32(51):1–40. doi:10.1002/adma.202002197
  • Yuan W, Li H. Polymer-Based Nanocarriers for Therapeutic Nucleic Acids Delivery. Elsevier Inc.; 2017. doi:10.1016/b978-0-323-46143-6.00014-2
  • Merck KGaA. Polyethylenimine, branched; 2021. Available from: https://www.sigmaaldrich.com/ID/en/substance/polyethyleniminebranched1234525987068. Accessed September 11, 2021.
  • Merck KGaA. Polyethylenimine, linear; 2021. Available from: https://www.sigmaaldrich.com/ID/en/substance/polyethyleniminelinear123459002986?context=product. Accessed September 11, 2021.
  • Polymer Properties Database. Polyethyleneimine (Polyaziridine); 2021. Available from: https://polymerdatabase.com/PolymerBrands/Polyethyleneimine.html. Accessed March 23, 2022.
  • Gholami L, Sadeghnia HR, Darroudi M, Kazemi Oskuee R. Evaluation of genotoxicity and cytotoxicity induced by different molecular weights of polyethylenimine/DNA nanoparticles. Turkish J Biol. 2014;38(3):380–387. doi:10.3906/biy-1309-51
  • Wightman L, Kircheis R, Rössler V, et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J Gene Med. 2001;3(4):362–372. doi:10.1002/jgm.187
  • Omidi Y, Kafil V, Cytotoxic impacts of linear and branched polyethylenimine nanostructures in A431 cells. BioImpacts. 2011;1(1):23–30. doi:10.5681/bi.2011.004
  • Li T, Tong Z, Gao B, Li YC, Smyth A, Bayabil HK. Polyethyleneimine-modified biochar for enhanced phosphate adsorption. Environ Sci Pollut Res. 2020;27(7):7420–7429. doi:10.1007/s11356-019-07053-2
  • Rouhani P, Singh RN. Polyethyleneimine-FUNCTIONALIZED MAGnetic Fe 3 O 4 and nanodiamond particles as a platform for amoxicillin delivery. J Nanosci Nanotechnol. 2020;20(7):3957–3970. doi:10.1166/jnn.2020.17896
  • Wang H, Yu W, Zheng Y, Chen Z, Lin H, Shen Y. N -acetyl-l-leucine-polyethyleneimine-mediated delivery of CpG oligodeoxynucleotides 2006 inhibits RAW264.7 cell osteoclastogenesis. Drug Des Devel Ther. 2020;Volume 14:2657–2665. doi:10.2147/DDDT.S241826
  • Yoshitomi T, Shimada N, Iijima K, Hashizume M, Yoshimoto K. Polyethyleneimine-induced astaxanthin accumulation in the green alga Haematococcus pluvialis by increased oxidative stress. J Biosci Bioeng. 2019;128(6):751–754. doi:10.1016/j.jbiosc.2019.06.002
  • Li Y, Guo M, Lin Z, et al. Polyethylenimine-functionalized silver nanoparticle-based co-delivery of paclitaxel to induce HepG2 cell apoptosis. Int J Nanomedicine. 2016;11:6693–6702. doi:10.2147/IJN.S122666
  • Zhao MD, Li JQ, Chen FY, et al. Co-delivery of curcumin and paclitaxel by “core-shell” targeting amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. Int J Nanomed. 2019;14:9453–9467. doi:10.2147/IJN.S224579
  • Sharma N, Kumari RM, Gupta N, Syed A, Bahkali AH, Nimesh S. Poly-(lactic-co-glycolic) acid nanoparticles for synergistic delivery of epirubicin and paclitaxel to human lung cancer cells. Molecules. 2020;25:18. doi:10.3390/molecules25184243
  • Ozturk N, Kara A, Gulyuz S, et al. Exploiting ionisable nature of PEtOx-co-PEI to prepare pH sensitive, doxorubicin-loaded micelles. J Microencapsul. 2020;37:467–480. doi:10.1080/02652048.2020.1792566
  • Zhou W. Cholic acid-functionalized mesoporous silica nanoparticles loaded with ruthenium pro-drug delivery to cervical cancer therapy. J Inorg Organomet Polym Mater. 2021;31(1):311–318. doi:10.1007/s10904-020-01710-7
  • Wu Z, Zhan S, Fan W, et al. Peptide-mediated tumor targeting by a degradable nano gene delivery vector based on pluronic-modified polyethylenimine. Nanoscale Res Lett. 2016;11(1):1–13. doi:10.1186/s11671-016-1337-5
  • Weecharangsan W, Opanasopit P, Niyomtham N, Yingyongnarongkul BE, Kewsuwan P, Lee RJ. Synergistic inhibition of human carcinoma cell growth via co-delivery of p53 plasmid DNA and bcl-2 antisense oligodeoxyribonucleotide by cholic acid-modified polyethylenimine. Anticancer Res. 2017;37(11):6335–6340. doi:10.21873/anticanres.12085
  • Forcato DO, Fili AE, Alustiza FE, et al. Transfection of bovine fetal fibroblast with polyethylenimine (PEI) nanoparticles: effect of particle size and presence of fetal bovine serum on transgene delivery and cytotoxicity. Cytotechnology. 2017;69(4):655–665. doi:10.1007/s10616-017-0075-6
  • Tong WY, Alnakhli M, Bhardwaj R, et al. Delivery of siRNA in vitro and in vivo using PEI-capped porous silicon nanoparticles to silence MRP1 and inhibit proliferation in glioblastoma. J Nanobiotechnol. 2018;16(1):1–17. doi:10.1186/s12951-018-0365-y
  • Guo S, Xiao P, Li B, et al. Co-immunizing with PD-L1 induces CD8+ DCs-mediated anti-tumor immunity in multiple myeloma. Int Immunopharmacol. 2020;84:106516. doi:10.1016/j.intimp.2020.106516
  • Wang Y, Sun G, Gong Y, Zhang Y, Liang X, Yang L. Functionalized folate-modified graphene Oxide/PEI siRNA nanocomplexes for targeted ovarian cancer gene therapy. Nanoscale Res Lett. 2020;15(1). doi:10.1186/s11671-020-3281-7
  • Zhang C, Yuan W, Wu Y, Wan X, Gong Y. Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells. Life Sci. 2021;266:118886. doi:10.1016/j.lfs.2020.118886
  • Nishimura Y, Takeda K, Ezawa R, Ishii J, Ogino C, Kondo A. A display of pH-sensitive fusogenic GALA peptide facilitates endosomal escape from a bio-nanocapsule via an endocytic uptake pathway. J Nanobiotechnol. 2014;12(1):2–7. doi:10.1186/1477-3155-12-11
  • Zhou Z, Qutaish M, Han Z, et al. MRI detection of breast cancer micrometastases with a fibronectin-targeting contrast agent. Nat Commun. 2015;6:1–11. doi:10.1038/ncomms8984
  • Ng KE, Amin MCIM, Katas H, et al. pH-responsive triblock copolymeric micelles decorated with a cell-penetrating peptide provide efficient doxorubicin delivery. Nanoscale Res Lett. 2016;11(1). doi:10.1186/s11671-016-1755-4
  • Jia H, Chen S, Zhuo R, Feng J, Zhang X. Polymeric prodrug for bio-controllable gene and drug co-delivery. Sci China Chem. 2016;59(11):1397–1404. doi:10.1007/s11426-016-0230-9
  • Ebrahimian M, Taghavi S, Mokhtarzadeh A, Ramezani M, Hashemi M. Co-delivery of doxorubicin encapsulated PLGA nanoparticles and Bcl-xL shRNA using alkyl-modified PEI into breast cancer cells. Appl Biochem Biotechnol. 2017;183(1):126–136. doi:10.1007/s12010-017-2434-3
  • Wang T, Yu X, Han L, Liu T, Liu Y, Zhang N. Tumor microenvironment dual-responsive core–shell nanoparticles with hyaluronic acid-shield for efficient co-delivery of doxorubicin and plasmid DNA. Int J Nanomed. 2017;12:4773–4788. doi:10.2147/IJN.S134378
  • Chen L, Ji F, Bao Y, et al. Biocompatible cationic pullulan-g-desoxycholic acid-g-PEI micelles used to co-deliver drug and gene for cancer therapy. Mater Sci Eng C. 2017;70:418–429. doi:10.1016/j.msec.2016.09.019
  • Li Y, Zhang X, Zhang J, et al. Synthesis and characterization of a hyperbranched grafting copolymer PEI-g-PLeu for gene and drug co-delivery. J Mater Sci Mater Med. 2018;29(5). doi:10.1007/s10856-018-6057-1
  • Sun X, Li M, Yang Y, Jia H, Liu W. Carrier-free nanodrug-based virus-surface-mimicking nanosystems for efficient drug/gene co-delivery. Biomater Sci. 2018;6(12):3300–3308. doi:10.1039/c8bm01033a
  • Feng L, Yan S, Zhu Q, et al. Targeted multifunctional redox-sensitive micelle co-delivery of DNA and doxorubicin for the treatment of breast cancer. J Mater Chem B. 2018;6(20):3372–3386. doi:10.1039/c8tb00748a
  • Tian G, Pan R, Zhang B, et al. Liver-targeted combination therapy basing on glycyrrhizic acid-modified DSPE-PEG-PEI nanoparticles for co-delivery of doxorubicin and Bcl-2 siRNA. Front Pharmacol. 2019;9:1–13. doi:10.3389/fphar.2019.00004
  • Dong S, Zhou X, Yang J. TAT modified and lipid – PEI hybrid nanoparticles for co-delivery of docetaxel and pDNA. Biomed Pharmacother. 2016;84:954–961. doi:10.1016/j.biopha.2016.10.003
  • Pang ST, Lin FW, Chuang CK, Yang HW. Co-delivery of docetaxel and p44/42 MAPK siRNA using PSMA antibody-conjugated BSA-PEI layer-by-layer nanoparticles for prostate cancer target therapy. Macromol Biosci. 2017;17(5):1–9. doi:10.1002/mabi.201600421
  • Wang S, Shao M, Zhong Z, et al. Co-delivery of gambogic acid and TRAIL plasmid by hyaluronic acid grafted PEI-PLGA nanoparticles for the treatment of triple negative breast cancer. Drug Deliv. 2017;24(1):1791–1800. doi:10.1080/10717544.2017.1406558
  • Costa D, Valente AJM, Queiroz JA, Sousa Â. Finding the ideal polyethylenimine-plasmid DNA system for co-delivery of payloads in cancer therapy. Colloids Surfaces B Biointerfaces. 2018;170:627–636. doi:10.1016/j.colsurfb.2018.06.063
  • Hao F, Lee RJ, Yang C, et al. Targeted co-delivery of siRNA and methotrexate for tumor therapy via mixed micelles. Pharmaceutics. 2019;11(2):1–19. doi:10.3390/pharmaceutics11020092
  • Thapa B, Kc R, Bahniuk M, et al. Breathing new life into TRAIL for breast cancer therapy: co-delivery of pTRAIL and complementary siRNAs using lipopolymers. Hum Gene Ther. 2019;30(12):1531–1546. doi:10.1089/hum.2019.096
  • Magalhães M, Jorge J, Gonçalves AC, et al. miR-29b and retinoic acid co-delivery: a promising tool to induce a synergistic antitumoral effect in non-small cell lung cancer cells. Drug Deliv Transl Res. 2020;10(5):1367–1380. doi:10.1007/s13346-020-00768-7
  • Xu Y, Liu D, Hu J, Ding P, Chen M. Hyaluronic acid-coated pH sensitive poly (β-amino ester) nanoparticles for co-delivery of embelin and TRAIL plasmid for triple negative breast cancer treatment. Int J Pharm. 2020;573:118637. doi:10.1016/j.ijpharm.2019.118637
  • Norouzi P, Amini M, Dinarvand R, Arefian E, Seyedjafari E, Atyabi F. Co-delivery of gemcitabine prodrug along with anti NF-κB siRNA by tri-layer micelles can increase cytotoxicity, uptake and accumulation of the system in the cancers. Mater Sci Eng C. 2020;116:111161. doi:10.1016/j.msec.2020.111161
  • Joshi U, Filipczak N, Khan MM, Attia SA, Torchilin V. Hypoxia-sensitive micellar nanoparticles for co-delivery of siRNA and chemotherapeutics to overcome multi-drug resistance in tumor cells. Int J Pharm. 2020;590:119915. doi:10.1016/j.ijpharm.2020.119915
  • Vahidian F, Safarzadeh E, Mohammadi A, et al. siRNA-mediated silencing of CD44 delivered by Jet Pei enhanced Doxorubicin chemo sensitivity and altered miRNA expression in human breast cancer cell line (MDA-MB468). Mol Biol Rep. 2020;47(12):9541–9551. doi:10.1007/s11033-020-05952-z
  • Nedeljkovi M. Mechanisms of chemotherapy resistance in triple-negative breast cancer — how we can rise to the challenge. Cells. 2019;8(9):957.
  • Bai X, Ni J, Beretov J, Graham P, Li Y. Triple-negative breast cancer therapeutic resistance: where is the Achilles’ heel? Cancer Lett. 2020;497:100–111. doi:10.1016/j.canlet.2020.10.016
  • Chen G, Wang K, Wu P, et al. Development of fluorinated polyplex nanoemulsions for improved small interfering RNA delivery and cancer therapy. Nano Res. 2018;11(7):3746–3761. doi:10.1007/s12274-017-1946-z