200
Views
1
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

The Involvement of Insulin-Like Growth Factor 2 Messenger Ribonucleic Acid-Binding Protein 2 in the Regulation of the Expression of Breast Cancer-Related Genes

, , , , , , & show all
Pages 311-322 | Published online: 04 Dec 2023

References

  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
  • Liu G, Zhu T, Cui Y, et al. Correlation between IGF2BP2 gene polymorphism and the risk of breast cancer in Chinese Han women. Biomed Pharmacother. 2015;69:297–300. doi:10.1016/j.biopha.2014.12.017
  • Yang L, Giulio F, Jian-Ying. Z. p62/IMP2 stimulates cell migration and reduces cell adhesion in breast cancer. Oncotarget. 2015;6(32):32656.
  • McMullen Emily R, Gonzalez Maria E, Skala Stephanie L, et al. CCN6 regulates IGF2BP2 and HMGA2 signaling in metaplastic carcinomas of the breast. Breast Cancer Res Treat. 2018;172(3):577–586. doi:10.1007/s10549-018-4960-2
  • Pan X, Huang B, Ma Q, et al. Circular RNA circ-TNPO3 inhibits clear cell renal cell carcinoma metastasis by binding to IGF2BP2 and destabilizing SERPINH1 mRNA. Clin Transl Med. 2022;12(7). doi:10.1002/ctm2.994
  • Jie L, Xinya G, Zhanqiang Z, et al. CircCD44 plays oncogenic roles in triple-negative breast cancer by modulating the miR-502–5p/KRAS and IGF2BP2/Myc axes. Mol Cancer. 2021;20(1). doi:10.1186/s12943-021-01444-1
  • Valerie S, Hansen KM, Morris DR, LeBoeuf Renée C, Abrass CK. RNA-binding protein IGF2BP2/IMP2 is required for laminin-β2 mRNA translation and is modulated by glucose concentration. Ren Physiol. 2012;303(1):F75–F82. doi:10.1152/ajprenal.00185.2012
  • Xiaoge H, Wan-Xin P, Huaixiang Z, et al. IGF2BP2 regulates DANCR by serving as an N6-methyladenosine reader. Cell Death Differ. 2020;27(6):1782–1794. doi:10.1038/s41418-019-0461-z
  • Pei C, Yufan W, Ding S, et al. IGF2BP2 promotes pancreatic carcinoma progression by enhancing the stability of B3GNT6 mRNA via m6A methylation. Cancer Med. 2022. doi:10.1002/cam4.5096
  • Koh SY, Moon JY, Unno T, Cho SK. Baicalein suppresses stem cell-like characteristics in radio- and chemoresistant MDA-MB-231 human breast cancer cells through up-regulation of IFIT2. Nutrients. 2019;11(3):624. doi:10.3390/nu11030624
  • Brett E, Sauter M, Machens HG, Duscher D. Abstract 90: an unrecognized role of Ccl5 in triple negative breast tumor construction. Plast Reconstr Surg Glob Open. 2020;8(4 Suppl):59.
  • Jin WJ, Kim B, Kim H, Kim J, Lee ZH. NF-kappa B signaling regulates cell autonomous regulation of CXCL10 in breast cancer 4T1 cells. Mol Biol Cell. 2016;27:e295.
  • Liangping L, Gang F, Tao C, Lijun Z. Circ_0000514 promotes breast cancer progression by regulating the miR-296-5p/CXCL10 axis. J Biochem. 2021;170(6):753–761.
  • Mingyu L, Xiaozhi R, Ling L, et al. IGF-2 mRNA binding protein 2 regulates primordial germ cell development in zebrafish. Gen Comp Endocrinol. 2021;313. doi:10.1016/j.ygcen.2021.113875
  • Shan H, Zheng W, Yunyun C, Wenzhen W, Linlin H. Insulin-like growth factor 2 mRNA binding protein 2 promotes aerobic glycolysis and cell proliferation in pancreatic ductal adenocarcinoma via stabilizing GLUT1 mRNA. Acta Biochim Biophys Sin. 2019;51(7):743–752. doi:10.1093/abbs/gmz048
  • Tianyi G, Xiangxiang L, Bangshun H, Yuqin P, Shukui W. Long non-coding RNA 91H regulates IGF2 expression by interacting with IGF2BP2 and promotes tumorigenesis in colorectal cancer. Artif Cells Nanomed Biotechnol. 2020;48(1):664–671. doi:10.1080/21691401.2020.1727491
  • Hu F, Zheng H, Wei W, et al. RHPN1-AS1 drives the progression of hepatocellular carcinoma via regulating miR-596/IGF2BP2 axis. Curr Pharm Des. 2020;25(43):4630–4640. doi:10.2174/1381612825666191105104549
  • Xianfu S, Tao H, Chengjuan Z, et al. Long non-coding RNA LINC00968 reduces cell proliferation and migration and angiogenesis in breast cancer through up-regulation of PROX1 by reducing hsa-miR-423-5p. Cell Cycle. 2019;18(16):1908–1924. doi:10.1080/15384101.2019.1632641
  • Ming-Hui Z, Jian-Guo Q, Yong X, Xue-Hua Z. IDUA, NDST1, SAP30L, CRYBA4, and SI as novel prognostic signatures clear cell renal cell carcinoma. J Cell Physiol. 2019;234(9):16320–16327.
  • Q Zhu, Yongsheng L, Xiangmei D, Yue Y, Hongyan W, Sufen G. Linc-OIP5 loss regulates migration and invasion in MDA-MB-231 breast cancer cells by inhibiting YAP1/JAG1 signaling. Oncol Lett. 2020;19(1):103–112. doi:10.3892/ol.2019.11071
  • Negin N, Mahdyieh NA, Homa D. The role of toll-like receptors in breast cancer. J Qazvin Univ Med Sci. 2019;23(3):262–277.
  • Boafo KL, Shujing W, Youjing S, Qiang W. Multifaceted roles of CCL20 (C-C motif chemokine ligand 20): mechanisms and communication networks in breast cancer progression. Bioengineered. 2021;12(1):6923–6934.
  • Emily T, Jeremiah S, Peterson EA, Schroeder JA, Suwon K. Cxcl10 chemokine induces migration of ING4-deficient breast cancer cells via a novel crosstalk mechanism between the Cxcr3 and Egfr receptors. Mol Cell Biol. 2021;42(2). doi:10.1128/MCB.00382-21
  • Yukie F, Natsuko I, Koji M, et al. Significant association between high serum CCL5 levels and better disease-free survival of patients with early breast cancer. Cancer Sci. 2020;111(1):209–218. doi:10.1111/cas.14234