3,987
Views
21
CrossRef citations to date
0
Altmetric
Review

Promising Natural Products in New Drug Design, Development, and Therapy for Skin Disorders: An Overview of Scientific Evidence and Understanding Their Mechanism of Action

, ORCID Icon, ORCID Icon, ORCID Icon, , , , , ORCID Icon, , & show all
Pages 23-66 | Published online: 06 Jan 2022

References

  • Sinikumpu S-P, Huilaja L, Jokelainen J, et al. High prevalence of skin diseases and need for treatment in a middle-aged population. A Northern Finland birth cohort 1966 study. PLoS One. 2014;9(6):e99533. doi:10.1371/journal.pone.0099533
  • Kassab YW, Muhamad SA, Aldahoul H, Mohammed I, Paneerselvam G, Ayad M. The impact of skin disorders on patients’ quality of life in Malaysia. J Clin Intensive Care Med. 2019;4:001–009. doi:10.29328/journal.jcicm.1001018
  • Xu H, Timares L, Elmets CA. Host defenses in skin. In: Clinical Immunology. Elsevier; 2019.
  • Bos JD, Zonneveld I, Das PK, Krieg SR, van der Loos CM, Kapsenberg ML. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin. J Investig Dermatol. 1987;88(5):569–573. doi:10.1111/1523-1747.ep12470172
  • Nguyen AV, Soulika AM. The dynamics of the skin’s immune system. Int J Mol Sci. 2019;20(8):1811. doi:10.3390/ijms20081811
  • Lerman I, Mitchell DC, Richardson CT. Human cutaneous B cells: what do we really know? Ann Transl Med. 2021;9(5):440. doi:10.21037/atm-20-5185
  • Egbuniwe IU, Karagiannis SN, Nestle FO, Lacy KE. Revisiting the role of B cells in skin immune surveillance. Trends Immunol. 2015;36(2):102–111. doi:10.1016/j.it.2014.12.006
  • Debes GF, McGettigan SE. Skin-associated B cells in health and inflammation. J Immunol. 2019;202(6):1659–1666. doi:10.4049/jimmunol.1801211
  • Fetter T, Niebel D, Braegelmann C, Wenzel J. Skin-associated B cells in the pathogenesis of cutaneous autoimmune diseases—implications for therapeutic approaches. Cells. 2020;9(12):2627. doi:10.3390/cells9122627
  • Nestle FO, Di Meglio P, Qin J-Z, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol. 2009;9(10):679–691. doi:10.1038/nri2622
  • Kabashima K, Honda T, Ginhoux F, Egawa G. The immunological anatomy of the skin. Nat Rev Immunol. 2019;19(1):19–30. doi:10.1038/s41577-018-0084-5
  • Stingl G, Steiner G. Immunological host defense of the skin. Curr Probl Dermatol. 1989;18:22–30.
  • Vollono L, Falconi M, Gaziano R, et al. Potential of curcumin in skin disorders. Nutrients. 2019;11(9):2169. doi:10.3390/nu11092169
  • Wootton C, Bell S, Philavanh A, et al. Assessing skin disease and associated health-related quality of life in a rural Lao community. BMC Dermatol. 2018;18(1):1–10. doi:10.1186/s12895-018-0079-8
  • Malik K, Ahmad M, Zafar M, et al. An ethnobotanical study of medicinal plants used to treat skin diseases in northern Pakistan. BMC Complement Altern Med. 2019;19(1):1–38. doi:10.1186/s12906-018-2420-5
  • Hanrahan C, Odle T, Frey R. Botanical Medicine. Encyclopedia.com. Gale Encyclopedia of Alternative Medicine. [updated cited]. Avaiable from: https://www.encyclopedia.com/medicine/drugs/pharmacology/botanical-medicine. Accessed December 17, 2021.
  • Pelkonen O, Xu Q, Fan T-P. Why is research on herbal medicinal products important and how can we improve its quality? J Tradit Complement Med. 2014;4(1):1–7. doi:10.4103/2225-4110.124323
  • Samraj K, Thillaivanan S, Parthiban P. A review of beneficial effects of medicinal plants on skin and skin diseases. Int J Pharm Res Bio Sci. 2014;3(1):93–106.
  • Hussein RA, El-Anssary AA. Plants secondary metabolites: the key drivers of the pharmacological actions of medicinal plants. Herb Med. 2019;1:13.
  • Varma N. Phytoconstituents and their mode of extractions: an overview. Res J Chem Environ Sci. 2016;4(2):8–15.
  • Cox-Georgian D, Ramadoss N, Dona C, Basu C. Therapeutic and medicinal uses of terpenes. In: Medicinal Plants. Springer; 2019.
  • Tabassum N, Hamdani M. Plants used to treat skin diseases. Pharmacogn Rev. 2014;8(15):52. doi:10.4103/0973-7847.125531
  • Ochocka R, Hering A, Stefanowicz–Hajduk J, Cal K, Barańska H. The effect of mangiferin on skin: penetration, permeation and inhibition of ECM enzymes. PLoS One. 2017;12(7):e0181542. doi:10.1371/journal.pone.0181542
  • Navarro M, Arnaez E, Moreira I, et al. Polyphenolic characterization, antioxidant, and cytotoxic activities of Mangifera indica cultivars from Costa Rica. Foods. 2019;8(9):384. doi:10.3390/foods8090384
  • Tundis R, Loizzo M, Bonesi M, Menichini F. Potential role of natural compounds against skin aging. Curr Med Chem. 2015;22(12):1515–1538. doi:10.2174/0929867322666150227151809
  • Kim H-S, Song JH, Youn UJ, et al. Inhibition of UVB-induced wrinkle formation and MMP-9 expression by mangiferin isolated from Anemarrhena asphodeloides. Eur J Pharmacol. 2012;689(1–3):38–44. doi:10.1016/j.ejphar.2012.05.050
  • Chae S, Piao MJ, Kang KA, et al. Inhibition of matrix metalloproteinase-1 induced by oxidative stress in human keratinocytes by mangiferin isolated from Anemarrhena asphodeloides. Biosci Biotechnol Biochem. 2011;75(12):2321–2325. doi:10.1271/bbb.110465
  • Petrova A, Davids LM, Rautenbach F, Marnewick JL. Photoprotection by honeybush extracts, hesperidin and mangiferin against UVB-induced skin damage in SKH-1 mice. J Photochem Photobiol B. 2011;103(2):126–139. doi:10.1016/j.jphotobiol.2011.02.020
  • Song JH, Bae EY, Choi G, et al. Protective effect of Mango (M angifera indica L.) against UVB-induced skin aging in hairless mice. Photodermatol Photoimmunol Photomed. 2013;29(2):84–89. doi:10.1111/phpp.12030
  • Zhao Y, Wang W, Wu X, et al. Mangiferin antagonizes TNF-α-mediated inflammatory reaction and protects against dermatitis in a mice model. Int Immunopharmacol. 2017;45:174–179. doi:10.1016/j.intimp.2017.02.014
  • Pleguezuelos-Villa M, Diez-Sales O, Manca ML, et al. Mangiferin glycethosomes as a new potential adjuvant for the treatment of psoriasis. Int J Pharm. 2020;573:118844. doi:10.1016/j.ijpharm.2019.118844
  • Pleguezuelos-Villa M, Nácher A, Hernández M, Buso MOV, Sauri AR, Díez-Sales O. Mangiferin nanoemulsions in treatment of inflammatory disorders and skin regeneration. Int J Pharm. 2019;564:299–307. doi:10.1016/j.ijpharm.2019.04.056
  • Allaw M, Pleguezuelos-Villa M, Manca ML, et al. Innovative strategies to treat skin wounds with mangiferin: fabrication of transfersomes modified with glycols and mucin. Nanomedicine. 2020;15(17):1671–1685. doi:10.2217/nnm-2020-0116
  • Lwin OM, Giribabu N, Kilari EK, Salleh N. Topical administration of mangiferin promotes healing of the wound of streptozotocin-nicotinamide-induced type-2 diabetic male rats. J Dermatol Treat. 2020;1–10. doi:10.1080/09546634.2020.1721419
  • Gerber GS, Fox LT, Gerber M, et al. Stability, clinical efficacy, and antioxidant properties of Honeybush extracts in semi-solid formulations. Pharmacogn Mag. 2015;11(Suppl 2):S337. doi:10.4103/0973-1296.166063
  • Magcwebeba TU, Riedel S, Swanevelder S, et al. The potential role of polyphenols in the modulation of skin cell viability by Aspalathus linearis and Cyclopia spp. herbal tea extracts in vitro. J Pharm Pharmacol. 2016;68(11):1440–1453. doi:10.1111/jphp.12629
  • Mao X, Cheng R, Zhang H, et al. Self-healing and injectable hydrogel for matching skin flap regeneration. Adv Sci. 2019;6(3):1801555. doi:10.1002/advs.201801555
  • Mao X, Liu L, Cheng L, et al. Adhesive nanoparticles with inflammation regulation for promoting skin flap regeneration. J Control Release. 2019;297:91–101. doi:10.1016/j.jconrel.2019.01.031
  • Delgado-Hernández R, Hernández-Balmaseda I, Rodeiro-Guerra I, et al. Anti-angiogenic effects of mangiferin and mechanism of action in metastatic melanoma. Melanoma Res. 2020;30(1):39–51. doi:10.1097/CMR.0000000000000647
  • Jie J, Sha L, Ming L, Jizhou X. Antiviral effect of chinonin against herpes simples virus. J Huazhong Univ Sci Technol. 2004;24(5):521–524. doi:10.1007/BF02831126
  • Alexandra A-R, Andrew S. The science behind lutein. Toxicol Lett. 2004;150(1):57–83. doi:10.1016/j.toxlet.2003.10.031
  • Shao A, Hathcock JN. Risk assessment for the carotenoids lutein and lycopene. Regul Toxicol Pharmacol. 2006;45(3):289–298. doi:10.1016/j.yrtph.2006.05.007
  • Buscemi S, Corleo D, Di Pace F, Petroni ML, Satriano A, Marchesini G. The effect of lutein on eye and extra-eye health. Nutrients. 2018;10(9):1321. doi:10.3390/nu10091321
  • Balić A, Mokos M. Do we utilize our knowledge of the skin protective effects of carotenoids enough? Antioxidants. 2019;8(8):259. doi:10.3390/antiox8080259
  • Souyoul SA, Saussy KP, Lupo MP. Nutraceuticals: a review. Dermatol Ther (Heidelb). 2018;8(1):5–16. doi:10.1007/s13555-018-0221-x
  • Aziz E, Batool R, Akhtar W, et al. Xanthophyll: health benefits and therapeutic insights. Life Sci. 2020;240:117104. doi:10.1016/j.lfs.2019.117104
  • Murillo AG, Hu S, Fernandez ML. Zeaxanthin: metabolism, properties, and antioxidant protection of eyes, heart, liver, and skin. Antioxidants. 2019;8(9):390. doi:10.3390/antiox8090390
  • Heinen MM, Hughes MC, Ibiebele TI, Marks GC, Green AC, van der Pols JC. Intake of antioxidant nutrients and the risk of skin cancer. Eur J Cancer. 2007;43(18):2707–2716. doi:10.1016/j.ejca.2007.09.005
  • Panahi Y, Fazlolahzadeh O, Atkin SL, et al. Evidence of curcumin and curcumin analogue effects in skin diseases: a narrative review. J Cell Physiol. 2019;234(2):1165–1178. doi:10.1002/jcp.27096
  • Vaughn AR, Haas KN, Burney W, et al. Potential role of curcumin against biofilm-producing organisms on the skin: a review. Phytother Res. 2017;31(12):1807–1816. doi:10.1002/ptr.5912
  • Patel SS, Acharya A, Ray R, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr. 2020;60(6):887–939. doi:10.1080/10408398.2018.1552244
  • Aggarwal BB, Gupta SC, Sung B. Curcumin: an orally bioavailable blocker of TNF and other pro-inflammatory biomarkers. Br J Pharmacol. 2013;169(8):1672–1692. doi:10.1111/bph.12131
  • Heng M, Song M, Harker J, Heng M. Drug-induced suppression of phosphorylase kinase activity correlates with resolution of psoriasis as assessed by clinical, histological and immunohistochemical parameters. Br J Dermatol. 2000;143(5):937–949. doi:10.1046/j.1365-2133.2000.03767.x
  • Gupta SC, Prasad S, Kim JH, et al. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep. 2011;28(12):1937–1955. doi:10.1039/c1np00051a
  • Lai C-Y, Su Y-W, Lin K-I, Hsu L-C, Chuang T-H. Natural modulators of endosomal toll-like receptor-mediated psoriatic skin inflammation. J Immunol Res. 2017;2017:1–15. doi:10.1155/2017/7807313
  • Rawal RC, Shah BJ, Jayaraaman AM, Jaiswal V. Clinical evaluation of an Indian polyherbal topical formulation in the management of eczema. J Altern Complement Med. 2009;15(6):669–672. doi:10.1089/acm.2008.0508
  • Vaughn AR, Branum A, Sivamani RK. Effects of turmeric (Curcuma longa) on skin health: a systematic review of the clinical evidence. Phytother Res. 2016;30(8):1243–1264. doi:10.1002/ptr.5640
  • Lee H-S, Kim Y-D, Na B-R, et al. Phytocomponent p-Hydroxycinnamic acid inhibits T-cell activation by modulation of protein kinase C-θ-dependent pathway. Int Immunopharmacol. 2012;12(1):131–138. doi:10.1016/j.intimp.2011.11.001
  • Kim J, Park S, Jeon B-S, et al. Therapeutic effect of topical application of curcumin during treatment of radiation burns in a mini-pig model. J Vet Sci. 2016;17(4):435. doi:10.4142/jvs.2016.17.4.435
  • Sharma A, Mittal A, Puri V, Kumar P, Singh I. Curcumin-loaded, alginate–gelatin composite fibers for wound healing applications. 3 Biotech. 2020;10(11):1–13. doi:10.1007/s13205-020-02453-5
  • Mohanty C, Sahoo SK. Curcumin and its topical formulations for wound healing applications. Drug Discov Today. 2017;22(10):1582–1592. doi:10.1016/j.drudis.2017.07.001
  • Phan -T-T, See P, Lee S-T, Chan S-Y. Protective effects of curcumin against oxidative damage on skin cells in vitro: its implication for wound healing. J Trauma Acute Care Surg. 2001;51(5):927–931. doi:10.1097/00005373-200111000-00017
  • Mohammadi Z, Sharif Zak M, Majdi H, et al. The effect of chrysin–curcumin-loaded nanofibres on the wound-healing process in male rats. Artif Cells Nanomed Biotechnol. 2019;47(1):1642–1652. doi:10.1080/21691401.2019.1594855
  • Barchitta M, Maugeri A, Favara G, et al. Nutrition and wound healing: an overview focusing on the beneficial effects of curcumin. Int J Mol Sci. 2019;20(5):1119. doi:10.3390/ijms20051119
  • Sommerfeld B. Randomised, placebo-controlled, double-blind, split-face study on the clinical efficacy of Tricutan® on skin firmness. Phytomedicine. 2007;14(11):711–715. doi:10.1016/j.phymed.2007.09.015
  • Asada K, Ohara T, Muroyama K, Yamamoto Y, Murosaki S. Effects of hot water extract of Curcuma longa on human epidermal keratinocytes in vitro and skin conditions in healthy participants: a randomized, double-blind, placebo-controlled trial. J Cosmet Dermatol. 2019;18(6):1866–1874. doi:10.1111/jocd.12890
  • Kim H, Park J, Tak K-H, Bu SY, Kim E. Chemopreventive effects of curcumin on chemically induced mouse skin carcinogenesis in BK5. insulin-like growth factor-1 transgenic mice. In Vitro Cell Dev Biol Anim. 2014;50(9):883–892. doi:10.1007/s11626-014-9791-9
  • Lelli D, Pedone C, Sahebkar A. Curcumin and treatment of melanoma: the potential role of microRNAs. Biomed Pharmacother. 2017;88:832–834. doi:10.1016/j.biopha.2017.01.078
  • Wu J, Lu W-Y, Cui -L-L. Inhibitory effect of curcumin on invasion of skin squamous cell carcinoma A431 cells. Asian Pac J Cancer Prev. 2015;16(7):2813–2818. doi:10.7314/APJCP.2015.16.7.2813
  • Qiu Y, Yu T, Wang W, Pan K, Shi D, Sun H. Curcumin-induced melanoma cell death is associated with mitochondrial permeability transition pore (mPTP) opening. Biochem Biophys Res Commun. 2014;448(1):15–21. doi:10.1016/j.bbrc.2014.04.024
  • Tsai K-D, Lin J-C, Yang S-M, et al. Curcumin protects against UVB-induced skin cancers in SKH-1 hairless mouse: analysis of early molecular markers in carcinogenesis. Evid Based Complement Alternat Med. 2012;2012:1–11. doi:10.1155/2012/593952
  • Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014;2014:1–12. doi:10.1155/2014/186864
  • Mun S-H, Joung D-K, Kim Y-S, et al. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomedicine. 2013;20(8–9):714–718. doi:10.1016/j.phymed.2013.02.006
  • Almeida PP, Pereira ÍS, Rodrigues KB, et al. Photodynamic therapy controls of Staphylococcus aureus intradermal infection in mice. Lasers Med Sci. 2017;32(6):1337–1342. doi:10.1007/s10103-017-2247-1
  • Liu C-H, Huang H-Y. Antimicrobial activity of curcumin-loaded myristic acid microemulsions against Staphylococcus epidermidis. Chem Pharm Bull (Tokyo). 2012;60(9):1118–1124. doi:10.1248/cpb.c12-00220
  • Baltazar LM, Krausz AE, Souza ACO, et al. Trichophyton rubrum is inhibited by free and nanoparticle encapsulated curcumin by induction of nitrosative stress after photodynamic activation. PLoS One. 2015;10(3):e0120179. doi:10.1371/journal.pone.0120179
  • Ruivo J, Francisco C, Oliveira R, Figueiras A. The main potentialities of resveratrol for drug delivery systems. Braz J Pharm Sci. 2015;51(3):499–513. doi:10.1590/S1984-82502015000300002
  • Wen S, Zhang J, Yang B, Elias PM, Man M-Q. Role of resveratrol in regulating cutaneous functions. Evid Based Complement Alternat Med. 2020;2020:1–20. doi:10.1155/2020/2416837
  • Salehi B, Mishra AP, Nigam M, et al. Resveratrol: a double-edged sword in health benefits. Biomedicines. 2018;6(3):91. doi:10.3390/biomedicines6030091
  • Ratz-łyko A, Arct J. Resveratrol as an active ingredient for cosmetic and dermatological applications: a review. J Cosmet Laser Ther. 2019;21(2):84–90. doi:10.1080/14764172.2018.1469767
  • Boo YC. Human skin lightening efficacy of resveratrol and its analogs: from in vitro studies to cosmetic applications. Antioxidants. 2019;8(9):332. doi:10.3390/antiox8090332
  • Liang Q-X, Lin Y-H, Zhang C-H, et al. Resveratrol increases resistance of mouse oocytes to postovulatory aging in vivo. Aging (Albany NY). 2018;10(7):1586. doi:10.18632/aging.101494
  • Soleymani S, Iranpanah A, Najafi F, et al. Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin disorders. Arch Dermatol Res. 2019;311(8):577–588. doi:10.1007/s00403-019-01930-z
  • Deloche C, Lavaud B, Zaouati DC, et al. Antiaging potential of resveratrol upon clinical and biomechanical properties of the skin. In: Journal of the American Academy of Dermatology. Vol. 70. 360 Park Avenue South, New York, NY 10010-1710 USA: Mosby-Elsevier; 2014:AB37–AB37.
  • Buonocore D, Lazzeretti A, Tocabens P, et al. Resveratrol-procyanidin blend: nutraceutical and antiaging efficacy evaluated in a placebocontrolled, double-blind study. Clin Cosmet Investig Dermatol. 2012;5:159. doi:10.2147/CCID.S36102
  • Aziz MH, Afaq F, Ahmad N. Prevention of ultraviolet-B radiation damage by resveratrol in mouse skin is mediated via modulation in survivin. Photochem Photobiol. 2005;81(1):25–31. doi:10.1562/2004-08-13-RA-274.1
  • Dybkowska E, Sadowska A, Swiderski F, Rakowska R, Wysocka K. The occurrence of resveratrol in foodstuffs and its potential for supporting cancer prevention and treatment. A review. Rocz Panstw Zakl Hig. 2018;69(1):5–14.
  • Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: a review. Crit Rev Food Sci Nutr. 2018;58(9):1428–1447. doi:10.1080/10408398.2016.1263597
  • Reagan-Shaw S, Afaq F, Aziz MH, Ahmad N. Modulations of critical cell cycle regulatory events during chemoprevention of ultraviolet B-mediated responses by resveratrol in SKH-1 hairless mouse skin. Oncogene. 2004;23(30):5151–5160. doi:10.1038/sj.onc.1207666
  • Lee SH, Koo BS, Park SY, Kim YM. Anti-angiogenic effects of resveratrol in combination with 5-fluorouracil on B16 murine melanoma cells. Mol Med Rep. 2015;12(2):2777-2783. doi: 10.3892/mmr.2015.3675
  • Yarla NS, Bishayee A, Sethi G, et al. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. In: Seminars in Cancer Biology. Vol. 40. Elsevier; 2016:48–81.
  • Annunziata G, Maisto M, Schisano C, et al. Resveratrol as a novel anti-herpes simplex virus nutraceutical agent: an overview. Viruses. 2018;10(9):473. doi:10.3390/v10090473
  • Docherty JJ, Smith JS, Fu MM, Stoner T, Booth T. Effect of topically applied resveratrol on cutaneous herpes simplex virus infections in hairless mice. Antiviral Res. 2004;61(1):19–26. doi:10.1016/j.antiviral.2003.07.001
  • Docherty JJ, Fu MM, Hah JM, Sweet TJ, Faith SA, Booth T. Effect of resveratrol on herpes simplex virus vaginal infection in the mouse. Antiviral Res. 2005;67(3):155–162. doi:10.1016/j.antiviral.2005.06.008
  • Faith SA, Sweet TJ, Bailey E, Booth T, Docherty JJ. Resveratrol suppresses nuclear factor-κB in herpes simplex virus infected cells. Antiviral Res. 2006;72(3):242–251. doi:10.1016/j.antiviral.2006.06.011
  • Leyton L, Hott M, Acuña F, et al. Nutraceutical activators of AMPK/Sirt1 axis inhibit viral production and protect neurons from neurodegenerative events triggered during HSV-1 infection. Virus Res. 2015;205:63–72. doi:10.1016/j.virusres.2015.05.015
  • Yang S-C, Tseng C-H, Wang P-W, et al. Pterostilbene, a methoxylated resveratrol derivative, efficiently eradicates planktonic, biofilm, and intracellular MRSA by topical application. Front Microbiol. 2017;8:1103. doi:10.3389/fmicb.2017.01103
  • Soleymani S, Farzaei MH, Zargaran A, Niknam S, Rahimi R. Promising plant-derived secondary metabolites for treatment of acne vulgaris: a mechanistic review. Arch Dermatol Res. 2020;312(1):5–23. doi:10.1007/s00403-019-01968-z
  • Docherty JJ, McEwen HA, Sweet TJ, Bailey E, Booth TD. Resveratrol inhibition of Propionibacterium acnes. J Antimicrob Chemother. 2007;59(6):1182–1184. doi:10.1093/jac/dkm099
  • Taylor EJ, Yu Y, Champer J, Kim J. Resveratrol demonstrates antimicrobial effects against Propionibacterium acnes in vitro. Dermatol Ther. 2014;4(2):249–257. doi:10.1007/s13555-014-0063-0
  • Kjær TN, Thorsen K, Jessen N, Stenderup K, Pedersen SB. Resveratrol ameliorates imiquimod-induced psoriasis-like skin inflammation in mice. PLoS One. 2015;10(5):e0126599. doi:10.1371/journal.pone.0126599
  • Hemmati AA. The topical effect of grape seed extract 2% cream on surgery wound healing. Glob J Health Sci. 2015;7(3):52.
  • Perez-Bernal A, Munoz-Perez MA, Camacho F. Management of facial hyperpigmentation. Am J Clin Dermatol. 2000;1(5):261–268. doi:10.2165/00128071-200001050-00001
  • Yamakoshi J, Otsuka F, Sano A, et al. Lightening effect on ultraviolet-induced pigmentation of Guinea pig skin by oral administration of a proanthocyanidin-rich extract from grape seeds. Pigment Cell Res. 2003;16(6):629–638. doi:10.1046/j.1600-0749.2003.00093.x
  • Moreira AM, Bravo BSF, da Fonseca Amorim AG, Luiz RR, Issa MCA. Double-blind comparative study of hydroquinone and ursine grape extract in the treatment of melasma. Surg Cosmet Dermatol. 2010;2(2):99–104.
  • Caruso F, Rossi M, Kaur S, et al. Antioxidant properties of embelin in cell culture. Electrochemistry and theoretical mechanism of scavenging. potential scavenging of superoxide radical through the membrane cell. Antioxidants. 2020;9(5):382. doi:10.3390/antiox9050382
  • Kundap UP, Bhuvanendran S, Kumari Y, Othman I, Shaikh M. Plant derived phytocompound, embelin in CNS disorders: a systematic review. Front Pharmacol. 2017;8:76. doi:10.3389/fphar.2017.00076
  • Li Z, Chen S-J, Yu X-A, et al. Pharmacokinetic and bioavailability studies of embelin after intravenous and oral administration to rats. Evid Based Complement Alternat Med. 2019;2019. doi:10.1155/2019/9682495
  • Park N, Baek HS, Chun Y-J. Embelin-induced apoptosis of human prostate cancer cells is mediated through modulation of Akt and β-Catenin signaling. PLoS One. 2015;10(8):e0134760. doi:10.1371/journal.pone.0134760
  • Kumar GK, Dhamotharan R, Kulkarni NM, Mahat MYA, Gunasekaran J, Ashfaque M. Embelin reduces cutaneous TNF-α level and ameliorates skin edema in acute and chronic model of skin inflammation in mice. Eur J Pharmacol. 2011;662(1–3):63–69. doi:10.1016/j.ejphar.2011.04.037
  • Swamy HK, Krishna V, Shankarmurthy K, et al. Wound healing activity of embelin isolated from the ethanol extract of leaves of Embelia ribes Burm. J Ethnopharmacol. 2007;109(3):529–534. doi:10.1016/j.jep.2006.09.003
  • Wang W, Wu C, Tian B, et al. The inhibition of RANKL-induced osteoclastogenesis through the suppression of p38 signaling pathway by naringenin and attenuation of titanium-particle-induced osteolysis. Int J Mol Sci. 2014;15(12):21913–21934. doi:10.3390/ijms151221913
  • Venkateswara PR, Kiran S, Rohini P, Bhagyasree P. Flavonoid: a review on Naringenin. J Pharmacogn Phytochem. 2017;6:2778–2783.
  • Kumar R, Bhan AT. Naringenin suppresses chemically induced skin cancer in two-stage skin carcinogenesis mouse model. Nutr Cancer. 2020;72(6):976–983. doi:10.1080/01635581.2019.1656756
  • Salehi B, Fokou PVT, Sharifi-Rad M, et al. The therapeutic potential of naringenin: a review of clinical trials. Pharmaceuticals. 2019;12(1):11. doi:10.3390/ph12010011
  • Kumar R, Tiku A. Galangin induces cell death by modulating the expression of glyoxalase-1 and Nrf-2 in HeLa cells. Chem Biol Interact. 2018;279:1–9. doi:10.1016/j.cbi.2017.11.001
  • Anand K, Sarkar A, Kumar A, Ambasta RK, Kumar P. Combinatorial antitumor effect of naringenin and curcumin elicit angioinhibitory activities in vivo. Nutr Cancer. 2012;64(5):714–724. doi:10.1080/01635581.2012.686648
  • Ahamad MS, Siddiqui S, Jafri A, Ahmad S, Afzal M, Arshad M. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One. 2014;9(10):e110003. doi:10.1371/journal.pone.0110003
  • García-Bores A, Espinosa-González A, Reyna-Campos A, et al. Lippia graveolens photochemopreventive effect against UVB radiation-induced skin carcinogenesis. J Photochem Photobiol B. 2017;167:72–81. doi:10.1016/j.jphotobiol.2016.12.014
  • Rittié L, Fisher GJ. Natural and sun-induced aging of human skin. Cold Spring Harb Perspect Med. 2015;5(1):a015370. doi:10.1101/cshperspect.a015370
  • Jung SK, Ha SJ, Jung CH, et al. Naringenin targets ERK 2 and suppresses UVB-induced photoaging. J Cell Mol Med. 2016;20(5):909–919. doi:10.1111/jcmm.12780
  • Prasanth MI, Gayathri S, Bhaskar JP, Krishnan V, Balamurugan K. Analyzing the synergistic effects of antioxidants in combating photoaging using model nematode, Caenorhabditis elegans. Photochem Photobiol. 2020;96(1):139–147. doi:10.1111/php.13167
  • El-Mahdy MA, Zhu Q, Wang QE, et al. Naringenin protects HaCaT human keratinocytes against UVB-induced apoptosis and enhances the removal of cyclobutane pyrimidine dimers from the genome. Photochem Photobiol. 2008;84(2):307–316. doi:10.1111/j.1751-1097.2007.00255.x
  • Kim T-H, Kim G-D, Ahn H-J, Cho -J-J, Park YS, Park C-S. The inhibitory effect of naringenin on atopic dermatitis induced by DNFB in NC/Nga mice. Life Sci. 2013;93(15):516–524. doi:10.1016/j.lfs.2013.07.027
  • Nagula RL, Wairkar S. Cellulose microsponges based gel of naringenin for atopic dermatitis: design, optimization, in vitro and in vivo investigation. Int J Biol Macromol. 2020;164:717–725. doi:10.1016/j.ijbiomac.2020.07.168
  • Trombino S, Servidio C, Laganà AS, Conforti F, Marrelli M, Cassano R. Viscosified solid lipidic nanoparticles based on naringenin and linolenic acid for the release of cyclosporine A on the skin. Molecules. 2020;25(15):3535. doi:10.3390/molecules25153535
  • Gaggeri R, Rossi D, Daglia M, et al. An eco-friendly enantioselective access to (R)-naringenin as inhibitor of proinflammatory cytokine release. Chem Biodivers. 2013;10(8):1531–1538. doi:10.1002/cbdv.201200227
  • Alalaiwe A, Lin C-F, Hsiao C-Y, et al. Development of flavanone and its derivatives as topical agents against psoriasis: the prediction of therapeutic efficiency through skin permeation evaluation and cell-based assay. Int J Pharm. 2020;581:119256. doi:10.1016/j.ijpharm.2020.119256
  • Escribano-Ferrer E, Queralt Regué J, Garcia-Sala X, Boix Montañés A, Lamuela-Raventos RM. In vivo anti-inflammatory and antiallergic activity of pure naringenin, naringenin chalcone, and quercetin in mice. J Nat Prod. 2019;82(2):177–182. doi:10.1021/acs.jnatprod.8b00366
  • Yamamoto T, Yoshimura M, Yamaguchi F, et al. Anti-allergic activity of naringenin chalcone from a tomato skin extract. Biosci Biotechnol Biochem. 2004;68(8):1706–1711. doi:10.1271/bbb.68.1706
  • Yoshimura M, Sano A, Kamei J-I, Obata A. Identification and quantification of metabolites of orally administered naringenin chalcone in rats. J Agric Food Chem. 2009;57(14):6432–6437. doi:10.1021/jf901137x
  • Salih EY, Fyhrquist P, Abdalla A, et al. LC-MS/MS tandem mass spectrometry for analysis of phenolic compounds and pentacyclic triterpenes in antifungal extracts of Terminalia brownii (Fresen). Antibiotics. 2017;6(4):37. doi:10.3390/antibiotics6040037
  • Orhan D, Özçelik B, Özgen S, Ergun F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol Res. 2010;165(6):496–504. doi:10.1016/j.micres.2009.09.002
  • Al-Roujayee AS. Naringenin improves the healing process of thermally-induced skin damage in rats. J Int Med Res. 2017;45(2):570–582. doi:10.1177/0300060517692483
  • Memariani H, Memariani M, Ghasemian A. An overview on anti-biofilm properties of quercetin against bacterial pathogens. World J Microbiol Biotechnol. 2019;35(9):1–16. doi:10.1007/s11274-019-2719-5
  • Yang D, Wang T, Long M, Li P. Quercetin: its main pharmacological activity and potential application in clinical medicine. Oxid Med Cell Longev. 2020;2020:1–13. doi:10.1155/2020/8825387
  • Basu A, Das AS, Majumder M, Mukhopadhyay R. Antiatherogenic roles of dietary flavonoids chrysin, quercetin, and luteolin. J Cardiovasc Pharmacol. 2016;68(1):89–96. doi:10.1097/FJC.0000000000000380
  • Ulusoy HG, Sanlier N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr. 2020;60(19):3290–3303. doi:10.1080/10408398.2019.1683810
  • Shin EJ, Lee JS, Hong S, Lim T-G, Byun S. Quercetin directly targets JAK2 and PKCδ and prevents UV-induced photoaging in human skin. Int J Mol Sci. 2019;20(21):5262. doi:10.3390/ijms20215262
  • Chondrogianni N, Kapeta S, Chinou I, Vassilatou K, Papassideri I, Gonos ES. Anti-ageing and rejuvenating effects of quercetin. Exp Gerontol. 2010;45(10):763–771. doi:10.1016/j.exger.2010.07.001
  • Pawlikowska-Pawlega B, Gawron A. Effect of quercetin on the growth of mouse fibroblast cells in vitro. Pol J Pharmacol. 1995;47(6):531–535.
  • Sajadimajd S, Bahramsoltani R, Iranpanah A, et al. Advances on natural polyphenols as anticancer agents for skin cancer. Pharmacol Res. 2020;151:104584. doi:10.1016/j.phrs.2019.104584
  • Shaik Y, Caraffa A, Ronconi G, Lessiani G, Conti P. Impact of polyphenols on mast cells with special emphasis on the effect of quercetin and luteolin. Cent Eur J Immunol. 2018;43(4):476. doi:10.5114/ceji.2018.81347
  • Caltagirone S, Rossi C, Poggi A, et al. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer. 2000;87(4):595–600. doi:10.1002/1097-0215(20000815)87:4<595::AID-IJC21>3.0.CO;2-5
  • Vargas AJ, Sittadjody S, Thangasamy T, Mendoza EE, Limesand KH, Burd R. Exploiting tyrosinase expression and activity in melanocytic tumors: quercetin and the central role of p53. Integr Cancer Ther. 2011;10(4):328–340. doi:10.1177/1534735410391661
  • Brown J, Wang J, Kasman L, Jiang X, Haley-Zitlin V. Activities of muscadine grape skin and quercetin against Helicobacter pylori infection in mice. J Appl Microbiol. 2011;110(1):139–146. doi:10.1111/j.1365-2672.2010.04870.x
  • Amin MU, Khurram M, Khattak B, Khan J. Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement Altern Med. 2015;15(1):1–12. doi:10.1186/s12906-015-0580-0
  • Karuppagounder V, Arumugam S, Thandavarayan RA, Sreedhar R, Giridharan VV, Watanabe K. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov Today. 2016;21(4):632–639. doi:10.1016/j.drudis.2016.02.011
  • Matsushima M, Takagi K, Ogawa M, et al. Heme oxygenase-1 mediates the anti-allergic actions of quercetin in rodent mast cells. Inflamm Res. 2009;58(10):705–715. doi:10.1007/s00011-009-0039-1
  • Jung MK, Hur DY, Song SB, Park Y, Kim TS. Tannic acid and quercetin display a therapeutic effect in atopic dermatitis via suppression of angiogenesis and TARC expression in Nc/Nga mice. J Invest Dermatol. 2010;130(5):1459–1463. doi:10.1038/jid.2009.401
  • Weng Z, Zhang B, Asadi S, et al. Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans. PLoS One. 2012;7(3):e33805. doi:10.1371/journal.pone.0033805
  • Hatahet T, Morille M, Hommoss A, Devoisselle J, Müller R, Bégu S. Quercetin topical application, from conventional dosage forms to nanodosage forms. Eur J Pharm Biopharm. 2016;108:41–53. doi:10.1016/j.ejpb.2016.08.011
  • Gomathi K, Gopinath D, Ahmed MR, Jayakumar R. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials. 2003;24(16):2767–2772. doi:10.1016/S0142-9612(03)00059-0
  • Unahabhokha T, Sucontphunt A, Nimmannit U, Chanvorachote P, Yongsanguanchai N, Pongrakhananon V. Molecular signalings in keloid disease and current therapeutic approaches from natural based compounds. Pharm Biol. 2015;53(3):457–463. doi:10.3109/13880209.2014.918157
  • Story EN, Kopec RE, Schwartz SJ, Harris GK. An update on the health effects of tomato lycopene. Annu Rev Food Sci Technol. 2010;1:189–210. doi:10.1146/annurev.food.102308.124120
  • Camara M, de Cortes Sánchez-Mata M, Fernández-Ruiz V, Cámara RM, Manzoor S, Caceres JO. Lycopene: a review of chemical and biological activity related to beneficial health effects. Stud Nat Prod Chem. 2013;40:383–426.
  • Choksi PM, Joshi VY. A review on lycopene—extraction, purification, stability and applications. Int J Food Prop. 2007;10(2):289–298. doi:10.1080/10942910601052699
  • Olempska-Beer Z Lycopene (Synthetic) chemical and technical assessment (CTA). Submitted to the Joint Expert Committee on Food Additives (JECFA) Rome; 2006.
  • Przybylska S. Lycopene–a bioactive carotenoid offering multiple health benefits: a review. Int J Food Sci Technol. 2020;55(1):11–32. doi:10.1111/ijfs.14260
  • Heinrich U, Tronnier H, Stahl W, Bejot M, Maurette J-M. Antioxidant supplements improve parameters related to skin structure in humans. Skin Pharmacol Physiol. 2006;19(4):224–231. doi:10.1159/000093118
  • Darvin M, Patzelt A, Gehse S, et al. Cutaneous concentration of lycopene correlates significantly with the roughness of the skin. Eur J Pharm Biopharm. 2008;69(3):943–947. doi:10.1016/j.ejpb.2008.01.034
  • Segger D, Schönlau F. Supplementation with Evelle® improves skin smoothness and elasticity in a double-blind, placebo-controlled study with 62 women. J Dermatol Treat. 2004;15(4):222–226. doi:10.1080/09546630410033772
  • Meinke MC, Darvin ME, Vollert H, Lademann J. Bioavailability of natural carotenoids in human skin compared to blood. Eur J Pharm Biopharm. 2010;76(2):269–274. doi:10.1016/j.ejpb.2010.06.004
  • Marchena AM, Franco L, Romero AM, Barriga C, Rodríguez AB. Lycopene and melatonin: antioxidant compounds in cosmetic formulations. Skin Pharmacol Physiol. 2020;33(5):237–243. doi:10.1159/000508673
  • Fazekas Z, Gao D, Saladi RN, Lu Y, Lebwohl M, Wei H. Protective effects of lycopene against ultraviolet B-induced photodamage. Nutr Cancer. 2003;47(2):181–187. doi:10.1207/s15327914nc4702_11
  • Basu A, Imrhan V. Tomatoes versus lycopene in oxidative stress and carcinogenesis: conclusions from clinical trials. Eur J Clin Nutr. 2007;61(3):295–303. doi:10.1038/sj.ejcn.1602510
  • Cooperstone JL, Tober KL, Riedl KM, et al. Tomatoes protect against development of UV-induced keratinocyte carcinoma via metabolomic alterations. Sci Rep. 2017;7(1):1–9. doi:10.1038/s41598-017-05568-7
  • Kopec RE, Schick J, Tober KL, et al. Sex differences in skin carotenoid deposition and acute UVB-induced skin damage in SKH-1 hairless mice after consumption of tangerine tomatoes. Mol Nutr Food Res. 2015;59(12):2491–2501. doi:10.1002/mnfr.201500317
  • Hwang E-S, Bowen PE. Can the consumption of tomatoes or lycopene reduce cancer risk? Integr Cancer Ther. 2002;1(2):121–132. doi:10.1177/153473540200100203
  • Stahl W, Heinrich U, Aust O, Tronnier H, Sies H. Lycopene-rich products and dietary photoprotection. Photochem Photobiol Sci. 2006;5(2):238–242. doi:10.1039/B505312A
  • Mesa-Arango AC, Flórez-Muñoz SV, Sanclemente G. Mechanisms of skin aging. Latreia. 2017;30(2):160–170. doi:10.17533/udea.iatreia.v30n2a05
  • Sies H, Stahl W. Non-nutritive bioactive food constituents of plants: lycopene, lutein and zeaxanthin. Int J Vitam Nutr Res. 2003;73(2):95–100. doi:10.1024/0300-9831.73.2.95
  • Grether-Beck S, Marini A, Jaenicke T, Stahl W, Krutmann J. Molecular evidence that oral supplementation with lycopene or lutein protects human skin against ultraviolet radiation: results from a double-blinded, placebo-controlled, crossover study. Br J Dermatol. 2017;176(5):1231–1240. doi:10.1111/bjd.15080
  • Shih C-M, Hsieh C-K, Huang C-Y, et al. Lycopene inhibit IMQ-induced psoriasis-like inflammation by inhibiting ICAM-1 production in mice. Polymers. 2020;12(7):1521. doi:10.3390/polym12071521
  • Rühl R. Non-pro-vitamin A and pro-vitamin A carotenoids in atopy development. Int Arch Allergy Immunol. 2013;161(2):99–115. doi:10.1159/000345958
  • Han X, Zhang Y, Liang Y, et al. 6-Gingerol, an active pungent component of ginger, inhibits L-type Ca2+ current, contractility, and Ca2+ transients in isolated rat ventricular myocytes. Food Sci Nutr. 2019;7(4):1344–1352. doi:10.1002/fsn3.968
  • Information NCfB. PubChem Compound Summary for CID 442793, Gingerol. [updated cited]. Avaiable from: https://pubchem.ncbi.nlm.nih.gov/compound/Gingerol. Accessed December 17, 2021.
  • Wang S, Zhang C, Yang G, Yang Y. Biological properties of 6-gingerol: a brief review. Nat Prod Commun. 2014;9(7):1934578X1400900736. doi:10.1177/1934578X1400900736
  • Qiu J-X, Zhou Z-W, He Z-X, Zhang X, Zhou S-F, Zhu S. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies. Drug Des Devel Ther. 2015;9:841. doi:10.2147/DDDT.S74669
  • Sugimoto K, Takeuchi H, Nakagawa K, Matsuoka Y. Hyperthermic effect of Ginger (Zingiber officinale) extract-containing beverage on peripheral skin surface temperature in women. Evid Based Complement Alternat Med. 2018;2018:1–8. doi:10.1155/2018/3207623
  • Liu Y, Liu J, Zhang Y. Research progress on chemical constituents of Zingiber officinale Roscoe. Biomed Res Int. 2019;2019:1–21. doi:10.1155/2019/5370823
  • Kim J-K, Kim Y, Na K-M, Surh Y-J, Kim T-Y. [6]-Gingerol prevents UVB-induced ROS production and COX-2 expression in vitro and in vivo. Free Radic Res. 2007;41(5):603–614. doi:10.1080/10715760701209896
  • Huang H-C, Chiu S-H, Chang T-M. Inhibitory effect of [6]-gingerol on melanogenesis in B16F10 melanoma cells and a possible mechanism of action. Biosci Biotechnol Biochem. 2011;75(6):1067–1072. doi:10.1271/bbb.100851
  • Kim SO, Kundu JK, Shin YK, et al. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-κ B in phorbol ester-stimulated mouse skin. Oncogene. 2005;24(15):2558–2567. doi:10.1038/sj.onc.1208446
  • Ali F, Rahul F, Naz F, Jyoti S, Siddique YH. Health functionality of apigenin: a review. Int J Food Prop. 2017;20:1197–1238. doi:10.1080/10942912.2016.1207188
  • Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of apigenin. Int J Mol Sci. 2019;20(6):1305. doi:10.3390/ijms20061305
  • Wang M, Firrman J, Liu L, Yam K. A review on flavonoid apigenin: dietary intake, ADME, antimicrobial effects, and interactions with human gut microbiota. Biomed Res Int. 2019;2019. doi:10.1155/2019/7010467
  • Imran M, Aslam Gondal T, Atif M, et al. Apigenin as an anticancer agent. Phytother Res. 2020;34(8):1812–1828. doi:10.1002/ptr.6647
  • Bridgeman BB, Wang P, Ye B, Pelling JC, Volpert OV, Tong X. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: a new implication of skin cancer prevention. Cell Signal. 2016;28(5):460–468. doi:10.1016/j.cellsig.2016.02.008
  • Kiraly AJ, Soliman E, Jenkins A, Van Dross RT. Apigenin inhibits COX-2, PGE2, and EP1 and also initiates terminal differentiation in the epidermis of tumor bearing mice. Prostaglandins Leukot Essent Fatty Acids. 2016;104:44–53. doi:10.1016/j.plefa.2015.11.006
  • Paredes-Gonzalez X, Fuentes F, Su Z-Y, Kong A-NT. Apigenin reactivates Nrf2 anti-oxidative stress signaling in mouse skin epidermal JB6 P+ cells through epigenetics modifications. AAPS J. 2014;16(4):727–735. doi:10.1208/s12248-014-9613-8
  • Mirzoeva S, Tong X, Bridgeman BB, Plebanek MP, Volpert OV. Apigenin inhibits UVB-induced skin carcinogenesis: the role of thrombospondin-1 as an anti-inflammatory factor. Neoplasia. 2018;20(9):930–942. doi:10.1016/j.neo.2018.07.005
  • Hou M, Sun R, Hupe M, et al. Topical apigenin improves epidermal permeability barrier homoeostasis in normal murine skin by divergent mechanisms. Exp Dermatol. 2013;22(3):210–215. doi:10.1111/exd.12102
  • Zari ST, Zari TA. A review of four common medicinal plants used to treat eczema. J Med Plants Res. 2015;9(24):702–711. doi:10.5897/JMPR2015.5831
  • Man M-Q, Hupe M, Sun R, Man G, Mauro TM, Elias PM. Topical apigenin alleviates cutaneous inflammation in murine models. Evid Based Complement Alternat Med. 2012;2012:1–7. doi:10.1155/2012/912028
  • Arterbery V, Gupta S. Apigenin as an anti-aging skin treatment. J Clin Cosmet Dermatol. 2018;2(2):1–8.
  • Taghipour YD, Hajialyani M, Naseri R, et al. Nanoformulations of natural products for management of metabolic syndrome. Int J Nanomedicine. 2019;14:5303. doi:10.2147/IJN.S213831
  • Xie J, Huang S, Huang H, et al. Advances in the application of natural products and the novel drug delivery systems for psoriasis. Front Pharmacol. 2021;12:552. doi:10.3389/fphar.2021.644952
  • Yallapu MM, Nagesh PKB, Jaggi M, Chauhan SC. Therapeutic applications of curcumin nanoformulations. AAPS J. 2015;17(6):1341–1356. doi:10.1208/s12248-015-9811-z
  • Bhia M, Motallebi M, Abadi B, et al. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics. 2021;13(2):291. doi:10.3390/pharmaceutics13020291
  • Jain S, Khare P, Date T, et al. Mechanistic insights into high permeation vesicle-mediated synergistic enhancement of transdermal drug permeation. Nanomedicine. 2019;14(16):2227–2241. doi:10.2217/nnm-2018-0519
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–1268. doi:10.1038/nbt.1504
  • Sabri AH, Kim Y, Marlow M, et al. Intradermal and transdermal drug delivery using microneedles–Fabrication, performance evaluation and application to lymphatic delivery. Adv Drug Deliv Rev. 2020;153:195–215. doi:10.1016/j.addr.2019.10.004
  • Zsikó S, Csányi E, Kovács A, Budai-Szűcs M, Gácsi A, Berkó S. Methods to evaluate skin penetration in vitro. Sci Pharm. 2019;87(3):19. doi:10.3390/scipharm87030019
  • Polat BE, Deen WM, Langer R, Blankschtein D. A physical mechanism to explain the delivery of chemical penetration enhancers into skin during transdermal sonophoresis—Insight into the observed synergism. J Control Release. 2012;158(2):250–260. doi:10.1016/j.jconrel.2011.11.008
  • Abd E, Yousef SA, Pastore MN, et al. Skin models for the testing of transdermal drugs. Clin Pharmacol. 2016;8:163. doi:10.2147/CPAA.S64788
  • Gerber M, Breytenbach JC, Du Plessis J. Transdermal penetration of zalcitabine, lamivudine and synthesised N-acyl lamivudine esters. Int J Pharm. 2008;351(1–2):186–193. doi:10.1016/j.ijpharm.2007.09.040
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25. doi:10.1016/S0169-409X(96)00423-1
  • Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115–124. doi:10.1038/nrd1304
  • Choudhury H, Gorain B, Pandey M, et al. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci. 2017;106(7):1736–1751. doi:10.1016/j.xphs.2017.03.042
  • Huang X, Peng X, Wang Y, et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano. 2010;4(10):5887–5896. doi:10.1021/nn102055s
  • DeLouise LA. Applications of nanotechnology in dermatology. J Investig Dermatol. 2012;132(3):964–975. doi:10.1038/jid.2011.425
  • Jeevanandam J, San Chan Y, Danquah MK. Nano-formulations of drugs: recent developments, impact and challenges. Biochimie. 2016;128:99–112. doi:10.1016/j.biochi.2016.07.008
  • Sahni JK, Baboota S, Ali J. Promising role of nanopharmaceuticals in drug delivery. Pharma Times. 2011;43(10):16–18.
  • Diab R, Jaafar-Maalej C, Fessi H, Maincent P. Engineered nanoparticulate drug delivery systems: the next frontier for oral administration? AAPS J. 2012;14(4):688–702. doi:10.1208/s12248-012-9377-y
  • Kalani M, Yunus R. Application of supercritical antisolvent method in drug encapsulation: a review. Int J Nanomedicine. 2011;6:1429. doi:10.2147/IJN.S19021
  • Kaul S, Gulati N, Verma D, Mukherjee S, Nagaich U. Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm. 2018;2018:1–19. doi:10.1155/2018/3420204
  • Khogta S, Patel J, Barve K, Londhe V. Herbal nano-formulations for topical delivery. J Herb Med. 2020;20:100300. doi:10.1016/j.hermed.2019.100300
  • Kaur R, Sharma A, Puri V, Singh I. Preparation and characterization of biocomposite films of carrageenan/locust bean gum/montmorillonite for transdermal delivery of curcumin. BioImpacts. 2019;9(1):37. doi:10.15171/bi.2019.05
  • Ramakrishnan P, Loh WM, Gopinath SC, et al. Selective phytochemicals targeting pancreatic stellate cells as new anti-fibrotic agents for chronic pancreatitis and pancreatic cancer. Acta Pharm Sin B. 2020;10(3):399–413. doi:10.1016/j.apsb.2019.11.008
  • Lum PT, Sekar M, Gan SH, Bonam SR, Shaikh MF. Protective effect of natural products against Huntington’s disease: an overview of scientific evidence and understanding their mechanism of action. ACS Chem Neurosci. 2021;12(3):391–418. doi:10.1021/acschemneuro.0c00824
  • Lum PT, Sekar M, Gan SH, Pandy V, Bonam SR. Protective effect of mangiferin on memory impairment: a systematic review. Saudi J Biol Sci. 2020;28(1):917–927. doi:10.1016/j.sjbs.2020.11.037
  • Bonam SR, Wu YS, Tunki L, et al. What has come out from phytomedicines and herbal edibles for the treatment of cancer? ChemMedChem. 2018;13(18):1854–1872. doi:10.1002/cmdc.201800343
  • Pires JR, Nogueira MRS, Nunes AJF, et al. Deposition of immune complexes in gingival tissues in the presence of periodontitis and systemic lupus erythematosus. Front Immunol. 2021;12:663. doi:10.3389/fimmu.2021.591236
  • Careta MF, Romiti R. Localized scleroderma: clinical spectrum and therapeutic update. An Bras Dermatol. 2015;90:62–73. doi:10.1590/abd1806-4841.20152890
  • Sapkota B, Al Khalili Y. Mixed connective tissue disease. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021.
  • Cheeti A, Brent LH, Panginikkod S. Autoimmune myopathies. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021.
  • Koler RA, Montemarano A. Dermatomyositis. Am Fam Physician. 2001;64(9):1565.
  • Siiskonen H, Harvima I. Mast cells and sensory nerves contribute to neurogenic inflammation and pruritus in chronic skin inflammation. Front Cell Neurosci. 2019;13:422. doi:10.3389/fncel.2019.00422
  • Umehara Y, Kiatsurayanon C, Trujillo-Paez JV, et al. Intractable itch in atopic dermatitis: causes and treatments. Biomedicines. 2021;9(3):229. doi:10.3390/biomedicines9030229
  • Corsini E, Engin AB, Neagu M, et al. Chemical-induced contact allergy: from mechanistic understanding to risk prevention. Arch Toxicol. 2018;92(10):3031–3050. doi:10.1007/s00204-018-2283-z
  • Kaplan DH, Igyártó BZ, Gaspari AA. Early immune events in the induction of allergic contact dermatitis. Nat Rev Immunol. 2012;12(2):114–124. doi:10.1038/nri3150
  • Pratt CH, King LE, Messenger AG, Christiano AM, Sundberg JP. Alopecia areata. Nat Rev Dis Primers. 2017;3(1):1–17. doi:10.1038/nrdp.2017.11
  • Folgori L, Scarselli A, Angelino G, et al. Cutaneous granulomatosis and combined immunodeficiency revealing Ataxia-Telangiectasia: a case report. Ital J Pediatr. 2010;36(1):1–4. doi:10.1186/1824-7288-36-29
  • Goldman MP. Pathophysiology of telangiectasias. In: Sclerotherapy (Sixth Edition); 2017.
  • Beenhouwer DO. Molecular basis of diseases of immunity. In: Molecular Pathology. Elsevier; 2018.
  • Song E, Jaishankar GB, Saleh H, Jithpratuck W, Sahni R, Krishnaswamy G. Chronic granulomatous disease: a review of the infectious and inflammatory complications. Clin Mol Allergy. 2011;9(1):1–14. doi:10.1186/1476-7961-9-10
  • Freeman AF, Holland SM. The hyper-IgE syndromes. Immunol Allergy Clin North Am. 2008;28(2):277–291. doi:10.1016/j.iac.2008.01.005
  • Freeman AF, Olivier KN. Hyper-IgE syndromes and the lung. Clin Chest Med. 2016;37(3):557–567. doi:10.1016/j.ccm.2016.04.016
  • Snyder PW. Chapter 5 - Diseases of Immunity1. In: Zachary JF, editor. Pathologic Basis of Veterinary Disease (Sixth Edition). Mosby; 2017.
  • Justiz Vaillant AA, Ahmad F. Leukocyte adhesion deficiency. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021.
  • Fischer A. Severe combined immunodeficiencies (SCID). Clin Exp Immunol. 2000;122(2):143. doi:10.1046/j.1365-2249.2000.01359.x
  • Tasher D, Dalal I. The genetic basis of severe combined immunodeficiency and its variants. Appl Clin Genet. 2012;5:67. doi:10.2147/TACG.S18693
  • Badolato R, Donadieu J, Group WR. How I treat warts, hypogammaglobulinemia, infections, and myelokathexis syndrome. Blood. 2017;130(23):2491–2498.
  • Baharin MF, Dhaliwal JS, Sarachandran SV, Idris SZ, Yeoh SL. A rare case of Wiskott-Aldrich syndrome with normal platelet size: a case report. J Med Case Rep. 2016;10(1):1–4. doi:10.1186/s13256-016-0944-1
  • Malik MA, Masab M. Wiskott-Aldrich syndrome. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021.
  • Errichetti E, Stinco G. Dermoscopy in general dermatology: a practical overview. Dermatol Ther. 2016;6(4):471–507. doi:10.1007/s13555-016-0141-6
  • Langley R, Krueger G, Griffiths C. Psoriasis: epidemiology, clinical features, and quality of life. Ann Rheum Dis. 2005;64(suppl2):ii18–ii23. doi:10.1136/ard.2004.033217
  • Armstrong AW. Psoriasis. JAMA Dermatol. 2017;153(9):956. doi:10.1001/jamadermatol.2017.2103
  • Arnold DL, Krishnamurthy K. Lichen planus. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021.
  • Villarreal CDV, Alanis JCS, Pérez JCJ, Candiani JO. Cutaneous graft-versus-host disease after hematopoietic stem cell transplant-a review. An Bras Dermatol. 2016;91:336–343. doi:10.1590/abd1806-4841.20164180
  • Plaza JA, Prieto VG. Inflammatory skin conditions. In: Modern Surgical Pathology. Elsevier Inc.; 2009.
  • Harris BW, Badri T, Schlessinger J. Solar urticaria. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021.
  • Smith E, Kiss F, Porter RM, Anstey AV. A review of UVA-mediated photosensitivity disorders. Photochem Photobiol Sci. 2002;1(11):199–206.
  • Foti C, Bonamonte D, Cassano N, Vena G, Angelini G. Photoallergic contact dermatitis. G Ital Dermatol Venereol. 2009;144(5):515–525.
  • Bergqvist C, Ezzedine K. Vitiligo: a review. Dermatology. 2020;236(6):571–592. doi:10.1159/000506103
  • Marks JG, Miller JJ. CHAPTER 17 - Purpura. In: Marks JG, Miller JJ, editors. Lookingbill & Marks’ Principles of Dermatology (Fourth Edition). Edinburgh: W.B. Saunders; 2006.
  • Reamy BV, Williams PM, Lindsay TJ. Henoch-Schönlein purpura. Am Fam Physician. 2009;80(7):697–704.
  • Azanza JJC, Sarmiento PMC, Lia NL, Alexander SA, Modi V. Leukocytoclastic vasculitis: an early skin biopsy makes a difference. Cureus. 2020;12(5):e7912.
  • Baigrie D, Bansal P, Goyal A, Crane JS. Leukocytoclastic vasculitis. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021.
  • Hunder G. Vasculitis: diagnosis and therapy. Am J Med. 1996;100(2):37S–45S. doi:10.1016/S0002-9343(97)89545-9
  • Deacock S. An approach to the patient with urticaria. Clin Exp Immunol. 2008;153(2):151–161. doi:10.1111/j.1365-2249.2008.03693.x
  • Engin B, Oba MÇ, Serdaroğlu S. Urticaria and Angioedema. In: A Comprehensive Review of Urticaria and Angioedema. 2017:11.
  • Ely JW, Stone MS. The generalized rash: part I. Differential diagnosis. Am Fam Physician. 2010;81(6):726–734.
  • Hafsi W, Badri T. Erythema Multiforme. In: StatPearls. Treasure Island (FL): StatPearls Publishing. Copyright © 2021, StatPearls Publishing LLC.; 2021.
  • Paulino L, Hamblin DJ, Osondu N, Amini R. Variants of erythema multiforme: a case report and literature review. Cureus. 2018;10(10). doi:10.7759/cureus.3459
  • Klimas N, Quintanilla-Dieck J, Vandergriff T. Stevens–Johnson syndrome and toxic epidermal necrolysis. In: Cutaneous Drug Eruptions. Springer; 2015.
  • Mawson AR, Eriator I, Karre S. Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN): could retinoids play a causative role? Med Sci Monit. 2015;21:133. doi:10.12659/MSM.891043
  • Azizi G, Arshi S, Nabavi M, Shabestari MS, Suri D, Gupta S. Autoinflammatory disorders. In: Inborn Errors of Immunity. Elsevier; 2021.
  • Alsharief AN, Laxer RM, Wang Q, et al. Monogenic autoinflammatory diseases in children: single center experience with clinical, genetic, and imaging review. Insights Imaging. 2020;11(1):1–24. doi:10.1186/s13244-020-00889-0
  • Huttenlocher A, Frieden I, Emery H. Neonatal onset multisystem inflammatory disease. J Rheumatol. 1995;22(6):1171–1173.
  • Kutukculer N, Puel A, Eren Akarcan S, et al. Deficiency of interleukin-1 receptor antagonist: a case with late onset severe inflammatory arthritis, nail psoriasis with onychomycosis and well responsive to Adalimumab therapy. Case Rep Immunol. 2019;2019:1–6. doi:10.1155/2019/1902817
  • Schnellbacher C, Ciocca G, Menendez R, et al. Deficiency of interleukin-1 receptor antagonist responsive to anakinra. Pediatr Dermatol. 2013;30(6):758–760. doi:10.1111/j.1525-1470.2012.01725.x
  • Kasperkiewicz M, Ellebrecht CT, Takahashi H, et al. Pemphigus. Nat Rev Dis Primers. 2017;3(1):1–18.
  • James KA, Culton DA, Diaz LA. Diagnosis and clinical features of pemphigus foliaceus. Dermatol Clin. 2011;29(3):405–412. doi:10.1016/j.det.2011.03.012
  • Bakker CV, Terra JB, Pas HH, Jonkman MF. Bullous pemphigoid as pruritus in the elderly: a common presentation. JAMA Dermatol. 2013;149(8):950–953. doi:10.1001/jamadermatol.2013.756
  • Yatim A, Bohelay G, Grootenboer-Mignot S, et al. Paraneoplastic pemphigus revealed by anti-programmed death-1 pembrolizumab therapy for cutaneous squamous cell carcinoma complicating hidradenitis suppurativa. Front Med. 2019;6:249. doi:10.3389/fmed.2019.00249
  • Gupta R, Woodley DT, Chen M. Epidermolysis bullosa acquisita. Clin Dermatol. 2012;30(1):60–69. doi:10.1016/j.clinderma\tol.2011.03.011
  • Criado PR, Criado RFJ, Aoki V, et al. Dermatitis herpetiformis: relevance of the physical examination to diagnosis suspicion. Can Fam Physician. 2012;58(8):843–847.
  • Chen S, Mattei P, Fischer M, Gay JD, Milner SM, Price LA. Linear IgA bullous dermatosis. Eplasty. 2013;13:ic49.
  • Şentürk Ş, Dilek N, Tekin YB, Çolak S, Gündoğdu B, Güven ESG. Pemphigoid gestationis in a third trimester pregnancy. Case Rep Obstet Gynecol. 2014;2014. doi:10.1155/2014/127628
  • Snarskaya ES, Olisova OY, Makatsariya AD, et al. Skin pathologies in pregnancy. J Perinat Med. 2019;47(4):371–380. doi:10.1515/jpm-2018-0338
  • Lee SH, Koo BS, Park SY, Kim YM. Anti‑angiogenic effects of resveratrol in combination with 5‑fluorouracil on B16 murine melanoma cells. Mol Med Rep. 2015;12(2):2777–2783. doi:10.3892/mmr.2015.3675