329
Views
4
CrossRef citations to date
0
Altmetric
Original Research

6-Methoxyflavone and Donepezil Behavioral Plus Neurochemical Correlates in Reversing Chronic Ethanol and Withdrawal Induced Cognitive Impairment

, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1573-1593 | Published online: 28 May 2022

References

  • Avchalumov Y, Oliver RJ, Trenet W, et al. Chronic ethanol exposure differentially alters neuronal function in the medial prefrontal cortex and dentate gyrus. Neuropharmacol. 2021;185:108438. doi:10.1016/j.neuropharm.2020.108438
  • Somkuwar SS, Villalpando EG, Quach LW, et al. Abstinence from ethanol dependence produces concomitant cortical gray matter abnormalities, microstructural deficits and cognitive dysfunction. Eur Neuropsychopharmacol. 2021;42:22–34. doi:10.1016/j.euroneuro.2020.11.010
  • Fadda F, Rossetti ZL. Chronic ethanol consumption: from neuroadaptation to neurodegeneration. Progress Neurobiol. 1998;56(4):385–431. doi:10.1016/S0301-0082(98)00032-X
  • Bach EC, Morgan JW, Ewin SE, Barth SH, Raab-Graham KF, Weiner JL. Chronic ethanol exposures leads to a negative affective state in female rats that is accompanied by a paradoxical decrease in ventral hippocampus excitability. Frontiers Neurosci. 2021;15:458. doi:10.3389/fnins.2021.669075
  • Uniyal A, Kotiyal A, Gadepalli A, Ummadisetty O, Tiwari V. Epigallocatechin-3-gallate improves chronic alcohol induced cognitive dysfunction in rats by interfering with the neuro-inflammatory, cell death and oxido-nitrosative stress pathways; 2021.
  • Zhang X, Lian S, Zhang Y, Zhao Q. efficacy and safety of donepezil for mild cognitive impairment: a systematic review and meta-analysis. Clinic Neurol Neurosurg. 2022;213:107134. doi:10.1016/j.clineuro.2022.107134
  • Li Y, Sun X, Zhuang J, Wang J, Yang C. Donepezil ameliorates oxygen‑glucose deprivation/reoxygenation‑induced cardiac microvascular endothelial cell dysfunction through PARP1/NF‑κB signaling. Mol Medi Rep. 2022;25(4):1–9.
  • Getachew B, Hudson T, Heinbockel T, Csoka AB, Tizabi Y. Protective effects of donepezil against alcohol-induced toxicity in cell culture: role of caspase-3. Neurotox Res. 2018;34(3):757–762. doi:10.1007/s12640-018-9913-3
  • Panche A, Diwan A, Chandra S. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.
  • Rendeiro C, Rhodes JS, Spencer JP. The mechanisms of action of flavonoids in the brain: direct versus indirect effects. Neurochemi Int. 2015;89:126–139.
  • Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutri Biochem. 2002;13(10):572–584. doi:10.1016/S0955-2863(02)00208-5
  • Dong W, Wei T, Guang-Ming Y, Bao-Chang C. Anti-inflammatory, antioxidant and cytotoxic activities of flavonoids from Oxytropis falcata Bunge. J Nat Medi. 2010;8(6):461–465.
  • Ognibene E, Bovicelli P, Adriani W, Saso L, Laviola G. Behavioral effects of 6-bromoflavanone and 5-methoxy-6, 8-dibromoflavanone as anxiolytic compounds. Prog Neuro Psychopharmacol Biol Psychiatry. 2008;32(1):128–134. doi:10.1016/j.pnpbp.2007.07.023
  • Cho N, Lee KY, Huh J, et al. Cognitive-enhancing effects of Rhus verniciflua bark extract and its active flavonoids with neuroprotective and anti-inflammatory activities. Food Chemi Toxicol. 2013;58:355–361. doi:10.1016/j.fct.2013.05.007
  • Spencer JP. Food for thought: the role of dietary flavonoids in enhancing human memory, learning and neuro-cognitive performance: symposium on ‘diet and mental health’. Proc Nutri Soci. 2008;67(2):238–252. doi:10.1017/S0029665108007088
  • Pu F, Mishima K, Irie K, et al. Neuroprotective effects of quercetin and rutin on spatial memory impairment in an 8-arm radial maze task and neuronal death induced by repeated cerebral ischemia in rats. J Pharmacol Sci. 2007;104:0707310004.
  • Cho J-S, Han C-K, Lee Y-S, Jin C-B. Neuroprotective and antioxidant effects of the butanol fraction prepared from opuntia ficus-indica var. Saboten Biomol Thera. 2007;15(4):205–211. doi:10.4062/biomolther.2007.15.4.205
  • Hwang S-L, Shih P-H, Yen G-C. Neuroprotective effects of citrus flavonoids. J Agri Food Chemi. 2012;60(4):877–885. doi:10.1021/jf204452y
  • Devore EE, Kang JH, Breteler MM, Grodstein F. Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals Neurol. 2012;72(1):135–143. doi:10.1002/ana.23594
  • Johnston GA. Flavonoid nutraceuticals and ionotropic receptors for the inhibitory neurotransmitter GABA. Neurochem Int. 2015;89:120–125. doi:10.1016/j.neuint.2015.07.013
  • Ulubelen A, Mabry T, Aynehchi Y. Flavonoids of Anvillea garcini. J Nat Prod. 1979;42(6):624–626. doi:10.1021/np50006a007
  • Shahid M, Subhan F, Ahmad N, Sewell RD. The flavonoid 6-methoxyflavone allays cisplatin-induced neuropathic allodynia and hypoalgesia. Biomedi Pharmacothera. 2017;95:1725–1733. doi:10.1016/j.biopha.2017.09.108
  • Hall BJ, Karim N, Chebib M, Johnston GA, Hanrahan JR. Modulation of ionotropic GABA receptors by 6-methoxyflavanone and 6-methoxyflavone. Neurochemi Res. 2014;39(6):1068–1078. doi:10.1007/s11064-013-1157-2
  • So J-S, Kim G-C, Song M, et al. 6-Methoxyflavone inhibits NFAT translocation into the nucleus and suppresses T cell activation. J Immunol. 2014;193(6):2772–2783. doi:10.4049/jimmunol.1400285
  • Raghavendra V, Kulkarni SK. Possible antioxidant mechanism in melatonin reversal of aging and chronic ethanol-induced amnesia in plus-maze and passive avoidance memory tasks. Free Radical Biol Medi. 2001;30(6):595–602. doi:10.1016/S0891-5849(00)00447-0
  • Umukoro S, Adewole F, Eduviere A, Aderibigbe A, Onwuchekwa C. Free radical scavenging effect of donepezil as the possible contribution to its memory enhancing activity in mice. Drug Res. 2014;64(05):236–239.
  • Wang D-H, Li W, Liu X-F, Zhang J-M, Wang S-M. Chinese medicine formula “Jian-Pi-Zhi-Dong Decoction” attenuates Tourette Syndrome via downregulating the expression of dopamine transporter in mice. Evidence Based Comp Alter Medi. 2013;2013. doi:10.1155/2013/385685
  • Napier TC, Istre ED. Methamphetamine induced sensitization includes a functional upregulation of ventral pallidal 5 HT2A/2C receptors. Synapse. 2008;62(1):14–21. doi:10.1002/syn.20460
  • Rehman NU, Abbas M, Al-Rashida M, et al. Effect of 4-Fluoro-N-(4-Sulfamoylbenzyl) benzene sulfonamide on acquisition and expression of nicotine-induced behavioral sensitization and striatal adenosine levels. Drug Design Develop Thera. 2020;14:3777. doi:10.2147/DDDT.S270025
  • Egashira N, Kubota N, Goto Y, et al. The antipsychotic trifluoperazine reduces marble-burying behavior in mice via D2 and 5-HT2A receptors: implications for obsessive–compulsive disorder. Pharmacol Biochem Behav. 2018;165:9–13. doi:10.1016/j.pbb.2017.12.006
  • Golub HM, Zhou QG, Zucker H, et al. Chronic alcohol exposure is associated with decreased neurogenesis, aberrant integration of newborn neurons, and cognitive dysfunction in female mice. Clin Exp Res. 2015;39(10):1967–1977. doi:10.1111/acer.12843
  • Weitzner DS, Engler-Chiurazzi EB, Kotilinek LA, Ashe KH, Reed MN. Morris water maze test: optimization for mouse strain and testing environment. Jove J Visualized Exp. 2015;2015(100):e52706.
  • Hendrickx JO, De Moudt S, Calus E, De Deyn PP, Van Dam D, De Meyer GR. Age-related cognitive decline in spatial learning and memory of C57BL/6J mice. Behav Brain Res. 2022;418:113649. doi:10.1016/j.bbr.2021.113649
  • Prieur EA, Jadavji NM. Assessing spatial working memory using the spontaneous alternation Y-maze test in aged male mice. Bio Pro. 2019;9:3.
  • Lueptow LM. Novel object recognition test for the investigation of learning and memory in mice. J Visualized Exp. 2017;2017(126):e55718.
  • Chiang M-C, Huang AJ, Wintzer ME, Ohshima T, McHugh TJ. A role for CA3 in social recognition memory. Behav Brain Res. 2018;354:22–30. doi:10.1016/j.bbr.2018.01.019
  • Kraeuter A-K, Guest PC, Sarnyai Z. The nest building test in mice for assessment of general well-being. In: Pre-Clinical Models. Springer; 2019:87–91.
  • Hou X, Huang W, Tong Y, Tian M. Hollow dummy template imprinted boronate-modified polymers for extraction of norepinephrine, epinephrine and dopamine prior to quantitation by HPLC. Microchimica Acta. 2019;186(11):1–9. doi:10.1007/s00604-019-3801-2
  • Rubio J, Yucra S, Gasco M, Gonzales GF. Dose–response effect of black maca (Lepidium meyenii) in mice with memory impairment induced by ethanol. Toxicol Mecha Meth. 2011;21(8):628–634. doi:10.3109/15376516.2011.583294
  • Pinto LS, Gualberto FA, Pereira SR, Barros PA, Franco GC, Ribeiro AM. Dietary restriction protects against chronic-ethanol-induced changes in exploratory behavior in Wistar rats. Brain Res. 2006;1078(1):171–181. doi:10.1016/j.brainres.2005.12.092
  • Mansouri A, Demeilliers C, Amsellem S, Pessayre D, Fromenty B. Acute ethanol administration oxidatively damages and depletes mitochondrial DNA in mouse liver, brain, heart, and skeletal muscles: protective effects of antioxidants. J Pharmacol Exp Thera. 2001;298(2):737–743.
  • Steigerwald ES, Miller MW. Performance by adult rats in sensory‐mediated radial arm maze tasks is not impaired and may be transiently enhanced by chronic exposure to ethanol. Clin Exp Res. 1997;21(9):1553–1559. doi:10.1111/j.1530-0277.1997.tb04489.x
  • Lukoyanov NV, Madeira MD, Paula–Barbosa MM. Behavioral and neuroanatomical consequences of chronic ethanol intake and withdrawal. Physiol and Behavior. 1999;66(2):337–346. doi:10.1016/S0031-9384(98)00301-1
  • Ferreira SEM, Soares LM, Lira CR, et al. Ethanol-induced locomotor sensitization: neuronal activation in the nucleus accumbens and medial prefrontal cortex. Neurosci Letters. 2021;749:135745. doi:10.1016/j.neulet.2021.135745
  • Kliethermes CL. Anxiety-like behaviors following chronic ethanol exposure. Neurosci Biobehav Rev. 2005;28(8):837–850. doi:10.1016/j.neubiorev.2004.11.001
  • Ibos KE, Bodnár É, Bagosi Z, et al. Kisspeptin-8 induces anxiety-like behavior and hypolocomotion by activating the HPA axis and increasing GABA release in the nucleus accumbens in rats. Biomedi. 2021;9(2):112.
  • Heinz A, Beck A, Wrase J, et al. Neurotransmitter systems in alcohol dependence. Pharmacopsy. 2009;42(S 01):S95–S101. doi:10.1055/s-0029-1214395
  • Suwabe A, Kubota M, Niwa M, Kobayashi K, Kanba S. Effect of a 5-HT1A receptor agonist, flesinoxan, on the extracellular noradrenaline level in the hippocampus and on the locomotor activity of rats. Brain Res. 2000;858(2):393–401. doi:10.1016/S0006-8993(00)01941-7
  • Ongnok B, Khuanjing T, Chunchai T, et al. Donepezil provides neuroprotective effects against brain injury and Alzheimer’s pathology under conditions of cardiac ischemia/reperfusion injury. Biochimica et Biophysica Acta. 2021;1867(1):165975. doi:10.1016/j.bbadis.2020.165975
  • Ongnok B, Khuanjing T, Chunchai T, et al. Donepezil protects against doxorubicin-induced chemobrain in rats via attenuation of inflammation and oxidative stress without interfering with doxorubicin efficacy. Neurotherapeutics. 2021;18(3):2107–2125. doi:10.1007/s13311-021-01092-9
  • Garcı́a-Moreno LM, Conejo NM, Capilla A, Garcı́a-Sánchez O, Senderek K, Arias JL. Chronic ethanol intake and object recognition in young and adult rats. Progress Neuro Psychopharmacol Biol Psy. 2002;26(5):831–837. doi:10.1016/S0278-5846(01)00327-X
  • Morrisett R, Swartzwelder HS. Attenuation of hippocampal long-term potentiation by ethanol: a patch-clamp analysis of glutamatergic and GABAergic mechanisms. J Neurosci. 1993;13(5):2264–2272. doi:10.1523/JNEUROSCI.13-05-02264.1993
  • Antunes M, Biala G. The novel object recognition memory: neurobiology, test procedure, and its modifications. Cog Proc. 2012;13(2):93–110. doi:10.1007/s10339-011-0430-z
  • Barker GR, Warburton EC. When is the hippocampus involved in recognition memory? J Neurosci. 2011;31(29):10721–10731. doi:10.1523/JNEUROSCI.6413-10.2011
  • Spanswick SC, Dyck RH. Object/context specific memory deficits following medial frontal cortex damage in mice. PLoS One. 2012;7(8):e43698. doi:10.1371/journal.pone.0043698
  • Chastain G. Alcohol, neurotransmitter systems, and behavior. J General Psychol. 2006;133(4):329–335. doi:10.3200/GENP.133.4.329-335
  • Sakai R, Ukai W, Sohma H, et al. Attenuation of brain derived neurotrophic factor (BDNF) by ethanol and cytoprotective effect of exogenous BDNF against ethanol damage in neuronal cells. J Neural Trans. 2005;112(8):1005–1013. doi:10.1007/s00702-004-0246-4
  • Pereira DB, Rebola N, Rodrigues RJ, Cunha RA, Carvalho AP, Duarte CB. Trkb receptors modulation of glutamate release is limited to a subset of nerve terminals in the adult rat hippocampus. J Neurosci Res. 2006;83(5):832–844. doi:10.1002/jnr.20784
  • Cunha C, Brambilla R, Thomas KL. A simple role for BDNF in learning and memory? Frontiers Mol Neurosci. 2010;3:1.
  • Seabold GK, Luo J, Miller MW. Effect of ethanol on neurotrophin-mediated cell survival and receptor expression in cultures of cortical neurons. Develop Brain Res. 1998;108(1–2):139–145. doi:10.1016/S0165-3806(98)00043-1
  • Perez-Rando M, Castillo-Gomez E, Bueno-Fernandez C, Nacher J. The TrkB agonist 7, 8-dihydroxyflavone changes the structural dynamics of neocortical pyramidal neurons and improves object recognition in mice. Brain Struct Funct. 2018;223(5):2393–2408. doi:10.1007/s00429-018-1637-x
  • Kim HG, Oh MS. Memory-enhancing effect of Mori Fructus via induction of nerve growth factor. Brit J Nutri. 2013;110(1):86–94. doi:10.1017/S0007114512004710
  • Hamidkhaniha S, Bashiri H, Omidi A, et al. Effect of pretreatment with intracerebroventricular injection of minocycline on morphine‐induced memory impairment in passive avoidance test: role of P‐CREB and c‐Fos expression in the dorsal hippocampus and basolateral amygdala regions. Clin and Exp Pharmacol Physiol. 2019;46(8):711–722. doi:10.1111/1440-1681.13090
  • Assunção M, Santos-Marques M, De Freitas V, et al. Red wine antioxidants protect hippocampal neurons against ethanol-induced damage: a biochemical, morphological and behavioral study. Neurosci. 2007;146(4):1581–1592. doi:10.1016/j.neuroscience.2007.03.040
  • Alqudah MA, Alzoubi KH, Ma’abrih G, Khabour OF. Vitamin C prevents memory impairment induced by waterpipe smoke: role of oxidative stress. Inhalation Toxicol. 2018;30(4–5):141–148. doi:10.1080/08958378.2018.1474977
  • Rice ME. Ascorbate regulation and its neuroprotective role in the brain. Trends Neurosci. 2000;23(5):209–216. doi:10.1016/S0166-2236(99)01543-X
  • Ahmad A, Shah A, Badshah H, et al. Neuroprotection by vitamin C against ethanol-induced neuroinflammation associated neurodegeneration in developing rat brain. CNS Neurological Disorders Drug Tar. 2016;15(3):360–370. doi:10.2174/1871527315666151110130139
  • Othman MZ, Hassan Z, Has ATC. Morris water maze: a versatile and pertinent tool for assessing spatial learning and memory. Exp Animals. 2022;1:21–0120.
  • Miyoshi E, Wietzikoski EC, Bortolanza M, et al. Both the dorsal hippocampus and the dorsolateral striatum are needed for rat navigation in the Morris water maze. Behav Brain Res. 2012;226(1):171–178. doi:10.1016/j.bbr.2011.09.011
  • D’Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Rev. 2001;36(1):60–90. doi:10.1016/s0165-0173(01)00067-4
  • Tiwari V, Kuhad A, Chopra K. Suppression of neuro-inflammatory signaling cascade by tocotrienol can prevent chronic alcohol-induced cognitive dysfunction in rats. Behav Brain Res. 2009;203(2):296–303. doi:10.1016/j.bbr.2009.05.016
  • Pickering C, Alsiö J, Morud J, Ericson M, Robbins TW, Söderpalm B. Ethanol impairment of spontaneous alternation behaviour and associated changes in medial prefrontal glutamatergic gene expression precede putative markers of dependence. Pharmacol Biochem Behav. 2015;132:63–70. doi:10.1016/j.pbb.2015.02.021
  • Götesson J, Ericson M, Söderpalm B, Pickering C. Repeated ethanol but not phencyclidine impairs spontaneous alternation behaviour in the Y Maze. Basic Clin Pharmacol Toxicol. 2012;110(4):347–352. doi:10.1111/j.1742-7843.2011.00819.x
  • Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutri. 2000;130(4):1007S–1015S. doi:10.1093/jn/130.4.1007S
  • Kalita J, Kumar V, Misra UK, Bora HK. Memory and learning dysfunction following copper toxicity: biochemical and immunohistochemical basis. Mol Neurobiol. 2018;55(5):3800–3811. doi:10.1007/s12035-017-0619-y
  • Faingold C, N’gouemo P, Riaz A. Ethanol and neurotransmitter interactions—from molecular to integrative effects. Prog Neurobiol. 1998;55(5):509–535.
  • Kozlov A, Druzin MY, Kurzina N, Malinina E. The role of D1-dependent dopaminergic mechanisms of the frontal cortex in delayed responding in rats. Neurosci Behav Physiol. 2001;31(4):405–411. doi:10.1023/A:1010488612338
  • Ayabe T, Ano Y, Ohya R, Kitaoka S, Furuyashiki T. The lacto-tetrapeptide Gly–Thr–Trp–Tyr, β-lactolin, improves spatial memory functions via dopamine release and D1 receptor activation in the hippocampus. Nutrients. 2019;11(10):2469.
  • Chaurasiya ND, Midiwo J, Pandey P, et al. Selective Interactions of O-methylated flavonoid natural products with human monoamine oxidase-A and-B. Molecules. 2020;25(22):5358. doi:10.3390/molecules25225358
  • O’Callaghan C, Hezemans FH, Ye R, et al. Locus coeruleus integrity and the effect of atomoxetine on response inhibition in Parkinson’s disease. MedRxiv. 2020;144:2513–2526.
  • Coradazzi M, Gulino R, Fieramosca F, Falzacappa LV, Riggi M, Leanza G. Selective noradrenaline depletion impairs working memory and hippocampal neurogenesis. Neurobiol Aging. 2016;48:93–102. doi:10.1016/j.neurobiolaging.2016.08.012
  • Vaghef L, Farajdokht F, Erfani M, et al. Cerebrolysin attenuates ethanol-induced spatial memory impairments through inhibition of hippocampal oxidative stress and apoptotic cell death in rats. Alcohol. 2019;79:127–135. doi:10.1016/j.alcohol.2019.03.005
  • Hatami S, Hatami H, Sheikhzade F, Dehghan G. Chronic administration of crystal meth in parallel with oxidative stress impaired spatial memory in prefrontal cortex of mail rats. J Sci. 2016;14(2):126.
  • Davis CK, Vemuganti R. Antioxidant therapies in traumatic brain injury. Neurochem Int. 2022;152:105255. doi:10.1016/j.neuint.2021.105255
  • Manrique HM, Miquel M, Aragon CM. Brain catalase mediates potentiation of social recognition memory produced by ethanol in mice. Drug Alc Depend. 2005;79(3):343–350. doi:10.1016/j.drugalcdep.2005.02.007
  • Zinn CG, Clairis N, Cavalcante LES, Furini CRG, de Carvalho Myskiw J, Izquierdo I. Major neurotransmitter systems in dorsal hippocampus and basolateral amygdala control social recognition memory. Proc Nat Acad Sci. 2016;113(33):E4914–E4919.
  • Marquardt K, Brigman JL. The impact of prenatal alcohol exposure on social, cognitive and affective behavioral domains: insights from rodent models. Alcohol. 2016;51:1–15. doi:10.1016/j.alcohol.2015.12.002
  • Baroni L, Sarni AR, Zuliani C. Plant foods rich in antioxidants and human cognition: a systematic review. Antioxidants. 2021;10(5):714. doi:10.3390/antiox10050714
  • Greenberg GD, Phillips TJ, Crabbe JC. Effects of acute alcohol withdrawal on nest building in mice selectively bred for alcohol withdrawal severity. Physiol Behav. 2016;165:257–266. doi:10.1016/j.physbeh.2016.08.006
  • Deacon RM, Croucher A, Rawlins JNP. Hippocampal cytotoxic lesion effects on species-typical behaviours in mice. Behav Brain Res. 2002;132(2):203–213. doi:10.1016/S0166-4328(01)00401-6
  • Jedynak P, Jaholkowski P, Wozniak G, Sandi C, Kaczmarek L, Filipkowski RK. Lack of cyclin D2 impairing adult brain neurogenesis alters hippocampal-dependent behavioral tasks without reducing learning ability. Behav Brain Res. 2012;227(1):159–166. doi:10.1016/j.bbr.2011.11.007
  • Kondratiuk I, Devijver H, Lechat B, Van Leuven F, Kaczmarek L, Filipkowski RK. Glycogen synthase kinase-3beta affects size of dentate gyrus and species-typical behavioral tasks in transgenic and knockout mice. Behav Brain Res. 2013;248:46–50. doi:10.1016/j.bbr.2013.03.045
  • Greenberg GD, Huang L, Spence S, et al. Nest building is a novel method for indexing severity of alcohol withdrawal in mice. Behav Brain Res. 2016;302:182–190. doi:10.1016/j.bbr.2016.01.023
  • Sager TN, Kirchhoff J, Mørk A, et al. Nest building performance following MPTP toxicity in mice. Behav Brain Res. 2010;208(2):444–449. doi:10.1016/j.bbr.2009.12.014
  • Gildawie KR, Galli RL, Shukitt-Hale B, Carey AN. Protective effects of foods containing flavonoids on age-related cognitive decline. Current Nutri Rep. 2018;7(2):39–48. doi:10.1007/s13668-018-0227-0
  • Spencer JP. The interactions of flavonoids within neuronal signalling pathways. Genes Nutri. 2007;2(3):257–273. doi:10.1007/s12263-007-0056-z
  • Chen W-F, Shih Y-H, Liu H-C, et al. 6-methoxyflavone suppresses neuroinflammation in lipopolysaccharide- stimulated microglia through the inhibition of TLR4/MyD88/p38 MAPK/NF-κB dependent pathways and the activation of HO-1/NQO-1 signaling. Phytomedicine. 2022;99:154025. doi:10.1016/j.phymed.2022.154025
  • Galati G. O’brien PJ. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radical Biol Medi. 2004;37(3):287–303. doi:10.1016/j.freeradbiomed.2004.04.034