106
Views
3
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Effects of Uremic Clearance Granules on p38 MAPK/NF-κB Signaling Pathway, Microbial and Metabolic Profiles in End-Stage Renal Disease Rats Receiving Peritoneal Dialysis

, , , , , , , , & ORCID Icon show all
Pages 2529-2544 | Published online: 05 Dec 2023

References

  • Han E, Shiraz F, Haldane V, et al. Biopsychosocial experiences and coping strategies of elderly ESRD patients: a qualitative study to inform the development of more holistic and person-centred health services in Singapore. BMC Public Health. 2019;19(1):1107. doi:10.1186/s12889-019-7433-6
  • Xie J, Zeng S, Xie L, et al. Differences in the clinical presentation, management, and in-hospital outcomes of acute aortic dissection in patients with and without end-stage renal disease. BMC Nephrol. 2021;22(1):257. doi:10.1186/s12882-021-02432-9
  • Perl J, McArthur E, Tan VS, et al. ESRD among immigrants to Ontario, Canada: a population-based study. J Am Soc Nephrol. 2018;29(7):1948–1959. doi:10.1681/ASN.2017101055
  • Mehrotra R, Devuyst O, Davies SJ, Johnson DW. The current state of peritoneal dialysis. J Am Soc Nephrol. 2016;27(11):3238–3252. doi:10.1681/ASN.2016010112
  • Miao XH, Wang CG, Hu BQ, Li A, Chen CB, Song WQ. TGF-beta1 immunohistochemistry and promoter methylation in chronic renal failure rats treated with Uremic Clearance Granules. Folia Histochem Cytobiol. 2010;48(2):284–291. doi:10.2478/v10042-010-0001-7
  • Huang YR, Wei QX, Wan YG, et al. Ureic clearance granule, alleviates renal dysfunction and tubulointerstitial fibrosis by promoting extracellular matrix degradation in renal failure rats, compared with enalapril. J Ethnopharmacol. 2014;155(3):1541–1552. doi:10.1016/j.jep.2014.07.048
  • Lu ZY, Liu SW, Xie YS, et al. Inhibition of the tubular epithelial-to-mesenchymal transition in vivo and in vitro by the Uremic Clearance Granule (). Chin J Integr Med. 2013;19(12):918–926. doi:10.1007/s11655-013-1654-9
  • Wu HM, Sun HJ, Wang F, Yang M, Dong BR, Liu GJ. Oral adsorbents for preventing or delaying the progression of chronic kidney disease. Cochrane Database Syst Rev. 2014;(10):Cd007861. doi:10.1002/14651858.CD007861.pub2
  • Romero-Becerra R, Santamans AM, Folgueira C, Sabio G. p38 MAPK pathway in the heart: new insights in health and disease. Int J Mol Sci. 2020;21(19):7412. doi:10.3390/ijms21197412
  • Ghoneum A, Said N. PI3K-AKT-mTOR and NFκB pathways in ovarian cancer: implications for targeted therapeutics. Cancers (Basel). 2019;11(7):949. doi:10.3390/cancers11070949
  • Xing S, Zhang B, Hua R, et al. URG4/URGCP enhances the angiogenic capacity of human hepatocellular carcinoma cells in vitro via activation of the NF-κB signaling pathway. BMC Cancer. 2015;15:368. doi:10.1186/s12885-015-1378-7
  • Nie Y, Wang Z, Chai G, et al. Dehydrocostus lactone suppresses LPS-induced acute lung injury and macrophage activation through NF-κB signaling pathway mediated by p38 MAPK and Akt. Molecules. 2019;24(8):1510. doi:10.3390/molecules24081510
  • Liu Z, Zhong T, Zheng D, Cepinskas I, Peng T, Su L. Heat stress pretreatment decreases lipopolysaccharide-induced apoptosis via the p38 signaling pathway in human umbilical vein endothelial cells. Mol Med Rep. 2016;14(1):1007–1013. doi:10.3892/mmr.2016.5303
  • Wu D, Luo N, Wang L, et al. Hydrogen sulfide ameliorates chronic renal failure in rats by inhibiting apoptosis and inflammation through ROS/MAPK and NF-κB signaling pathways. Sci Rep. 2017;7(1):455. doi:10.1038/s41598-017-00557-2
  • Jiang J, Zheng D, Li Y, Liu G, Zhou H, Liu Y. Long noncoding RNA MANTIS relieved the protein-bound uremic toxin-induced injury on human umbilical vein endothelial cells in chronic kidney disease and end-stage renal disease. Int J Clin Exp Pathol. 2018;11(7):3236–3246.
  • Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684–696. doi:10.1038/nrneph.2011.149
  • Mo L, Xiao X, Song S, et al. Protective effect of Huang Gan formula in 5/6 nephrectomized rats by depressing the Wnt/β-catenin signaling pathway. Drug Des Devel Ther. 2015;9:2867–2881. doi:10.2147/DDDT.S81157
  • Evenepoel P, Poesen R, Meijers B. The gut-kidney axis. Pediatr Nephrol. 2017;32(11):2005–2014. doi:10.1007/s00467-016-3527-x
  • Zhao J, Ning X, Liu B, Dong R, Bai M, Sun S. Specific alterations in gut microbiota in patients with chronic kidney disease: an updated systematic review. Ren Fail. 2021;43(1):102–112. doi:10.1080/0886022X.2020.1864404
  • Vaziri ND, Wong J, Pahl M, et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013;83(2):308–315. doi:10.1038/ki.2012.345
  • Jiang S, Xie S, Lv D, et al. Alteration of the gut microbiota in Chinese population with chronic kidney disease. Sci Rep. 2017;7(1):2870. doi:10.1038/s41598-017-02989-2
  • Wei X, Bao Y, Zhan X, et al. MiR-200a ameliorates peritoneal fibrosis and functional deterioration in a rat model of peritoneal dialysis. Int Urol Nephrol. 2019;51(5):889–896. doi:10.1007/s11255-019-02122-4
  • Zhang Y, Wang L, Meng L, Cao G, Wu Y. Sirtuin 6 overexpression relieves sepsis-induced acute kidney injury by promoting autophagy. Cell Cycle. 2019;18(4):425–436. doi:10.1080/15384101.2019.1568746
  • Barone A, Cristiano MC, Cilurzo F, et al. Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: a novel use as an anti-inflammatory agent in topical drug delivery. Colloids Surf B Biointerfaces. 2020;193:111152. doi:10.1016/j.colsurfb.2020.111152
  • Cai Z, Liu J, Bian H, Cai J. Albiflorin alleviates ovalbumin (OVA)-induced pulmonary inflammation in asthmatic mice. Am J Transl Res. 2019;11(12):7300–7309.
  • Zhou X, Fouda S, Zeng XY, et al. Characterization of the therapeutic profile of albiflorin for the metabolic syndrome. Front Pharmacol. 2019;10:1151. doi:10.3389/fphar.2019.01151
  • Zhou YX, Gong XH, Zhang H, Peng C. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects. Biomed Pharmacother. 2020;130:110505. doi:10.1016/j.biopha.2020.110505
  • Zhang L, Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony. Pharmacol Ther. 2020;207:107452. doi:10.1016/j.pharmthera.2019.107452
  • Zhang L, Chen J. Biological effects of tetrahydroxystilbene glucoside: an active component of a rhizome extracted from polygonum multiflorum. Oxid Med Cell Longev. 2018;2018:3641960. doi:10.1155/2018/3641960
  • Huang C, Wang Y, Wang J, Yao W, Chen X, Zhang W. TSG (2,3,4’,5-tetrahydroxystilbene 2-O-β-D-glucoside) suppresses induction of pro-inflammatory factors by attenuating the binding activity of nuclear factor-κB in microglia. J Neuroinflammation. 2013;10:129. doi:10.1186/1742-2094-10-129
  • Ma Z, Li L, Livingston MJ, et al. p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease. J Clin Invest. 2020;130(9):5011–5026. doi:10.1172/JCI135536
  • Zhang G, Cui G, Tong S, Cao Q. Salvianolic acid A alleviates the renal damage in rats with chronic renal failure. Acta Cir Bras. 2019;34(2):e201900204. doi:10.1590/s0102-8650201900204
  • Kim DC, Quang TH, Oh H, Kim YC. Steppogenin isolated from cudrania tricuspidata shows antineuroinflammatory effects via NF-κB and MAPK pathways in LPS-stimulated BV2 and primary rat microglial cells. Molecules. 2017;22(12):2130. doi:10.3390/molecules22122130
  • Huang WJ, Liu WJ, Xiao YH, et al. Tripterygium and its extracts for diabetic nephropathy: efficacy and pharmacological mechanisms. Biomed Pharmacother. 2020;121:109599. doi:10.1016/j.biopha.2019.109599
  • Chang MX, Xiong F. Astaxanthin and its effects in inflammatory responses and inflammation-associated diseases: recent advances and future directions. Molecules. 2020;25(22):5342. doi:10.3390/molecules25225342
  • Giordano L, Mihaila SM, Eslami Amirabadi H, Masereeuw R. Microphysiological systems to recapitulate the gut-kidney axis. Trends Biotechnol. 2021;39:811–823. doi:10.1016/j.tibtech.2020.12.001
  • Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat Rev Nephrol. 2018;14(7):442–456. doi:10.1038/s41581-018-0018-2
  • Lai L, Li Y, Liu J, et al. Bovine serum albumin aggravates macrophage M1 activation and kidney injury in heterozygous Klotho-deficient mice via the gut microbiota-immune axis. Int J Biol Sci. 2021;17(3):742–755. doi:10.7150/ijbs.56424
  • Stanford J, Charlton K, Stefoska-Needham A, Ibrahim R, Lambert K. The gut microbiota profile of adults with kidney disease and kidney stones: a systematic review of the literature. BMC Nephrol. 2020;21(1):215. doi:10.1186/s12882-020-01805-w
  • Kato T, Yamazaki K, Nakajima M, et al. Oral administration of porphyromonas gingivalis alters the gut microbiome and serum metabolome. mSphere. 2018;3(5). doi:10.1128/mSphere.00460-18
  • Kim H. Glutamine as an immunonutrient. Yonsei Med J. 2011;52(6):892–897. doi:10.3349/ymj.2011.52.6.892
  • Brand K. Glutamine and glucose metabolism during thymocyte proliferation. Pathways of glutamine and glutamate metabolism. Biochem J. 1985;228(2):353–361. doi:10.1042/bj2280353
  • Cruzat V, Macedo Rogero M, Noel Keane K, Curi R, Newsholme P. Glutamine: metabolism and immune function, supplementation and clinical translation. Nutrients. 2018;10(11):1564. doi:10.3390/nu10111564
  • Kim MH, Kim H. The roles of glutamine in the intestine and its implication in intestinal diseases. Int J Mol Sci. 2017;18(5). doi:10.3390/ijms18051051
  • Zhang S, Fitzpatrick PF. Identification of the allosteric site for phenylalanine in rat phenylalanine hydroxylase. J Biol Chem. 2016;291(14):7418–7425. doi:10.1074/jbc.M115.709998
  • Sterkel M, Oliveira PL. Developmental roles of tyrosine metabolism enzymes in the blood-sucking insect Rhodnius prolixus. Proc Biol Sci. 2017;284:1854.
  • Gryp T, Vanholder R, Vaneechoutte M, Glorieux G. p-cresyl sulfate. Toxins (Basel). 2017;9(2):52. doi:10.3390/toxins9020052
  • Jaskiw GE, Obrenovich ME, Kundrapu S, Donskey CJ. Changes in the serum metabolome of patients treated with broad-spectrum antibiotics. Pathog Immun. 2020;5(1):382–418. doi:10.20411/pai.v5i1.394