345
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Effects of Simvastatin on the Metabolism of Vonoprazan in Rats Both in vitro and in vivo

ORCID Icon, , ORCID Icon, , , ORCID Icon, , , , , , & show all
Pages 1779-1789 | Published online: 09 Jun 2022

References

  • Tripathi DM, Vilaseca M, Lafoz E, et al. Simvastatin prevents progression of acute on chronic liver failure in rats with cirrhosis and portal hypertension. Gastroenterology. 2018;155(5):1564–1577. doi:10.1053/j.gastro.2018.07.022
  • Balasubramanian R, Maideen NMP. HMG-CoA reductase inhibitors (Statins) and their drug interactions involving CYP enzymes, P-glycoprotein and OATP transporters - an overview. Curr Drug Metab. 2021;22:328–341. doi:10.2174/1389200222666210114122729
  • Choi DH, Li C, Choi JS. Effects of simvastatin on the pharmacokinetics of verapamil and its main metabolite, norverapamil, in rats. Eur J Drug Metab Pharmacokinet. 2009;34(3–4):163–168. doi:10.1007/BF03191168
  • Gao J, Ren H, Feng Z, et al. Effects of multidose simvastatin co-administration on pharmacokinetic profile of apatinib in rats by UPLC-MS/MS. Xenobiotica. 2020;50(9):1115–1120. doi:10.1080/00498254.2020.1740952
  • Garnock-Jones KP. Vonoprazan: first global approval. Drugs. 2015;75(4):439–443. doi:10.1007/s40265-015-0368-z
  • Yoneyama T, Teshima K, Jinno F, et al. A validated simultaneous quantification method for vonoprazan (TAK-438F) and its 4 metabolites in human plasma by the liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1015–1016:42–49. doi:10.1016/j.jchromb.2016.01.051
  • Yamasaki H, Kawaguchi N, Nonaka M, et al. In vitro metabolism of TAK-438, vonoprazan fumarate, a novel potassium-competitive acid blocker. Xenobiotica. 2017;47:1027–1034. doi:10.1080/00498254.2016.1203505
  • Kong W-M, Sun B-B, Wang Z-J, et al. Physiologically based pharmacokinetic–pharmacodynamic modeling for prediction of vonoprazan pharmacokinetics and its inhibition on gastric acid secretion following intravenous/oral administration to rats, dogs and humans. Acta Pharmacol Sin. 2020;41(6):852–865. doi:10.1038/s41401-019-0353-2
  • Wang Y, Wang C, Wang S, et al. Cytochrome P450-based drug-drug interactions of vonoprazan in vitro and in vivo . Front Pharmacol. 2020;11:53. doi:10.3389/fphar.2020.00053
  • Shen J, Wang B, Wang S, et al. Effects of voriconazole on the pharmacokinetics of vonoprazan in rats. Drug Des Devel Ther. 2020;14:2199–2206. doi:10.2147/DDDT.S255427
  • Sevrioukova IF, Poulos TL. Structural basis for regiospecific midazolam oxidation by human cytochrome P450 3A4. Proc Natl Acad Sci USA. 2017;114(3):486–491. doi:10.1073/pnas.1616198114
  • Bitencourt-Ferreira G, Pintro VO, de Azevedo WF. Docking with AutoDock4. In: de Azevedo WF Jr, editor. Docking Screens for Drug Discovery. New York: Springer New York; 2019:125–148.
  • Javaid S, Zafar H, Atia Tul W, et al. Identification of new lead molecules against anticancer drug target TFIIH subunit P8 using biophysical and molecular docking studies. Bioorg Chem. 2021;114:105021. doi:10.1016/j.bioorg.2021.105021
  • Schlessinger A, Welch MA, van Vlijmen H, Korzekwa K, Swaan PW, Matsson P. Molecular modeling of drug-transporter interactions-an international transporter consortium perspective. Clin Pharmacol Ther. 2018;104(5):818–835. doi:10.1002/cpt.1174
  • Patil R, Das S, Stanley A, Yadav L, Sudhakar A, Varma AK. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One. 2010;5(8):e12029. doi:10.1371/journal.pone.0012029
  • Hu LM, Dai DP, Hu GX, et al. Genetic polymorphisms and novel allelic variants of CYP2C19 in the Chinese Han population. Pharmacogenomics. 2012;13:1571–1581. doi:10.2217/pgs.12.141
  • Desta Z, Zhao X, Shin JG, et al. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet. 2002;41(12):913–958. doi:10.2165/00003088-200241120-00002
  • Otake K, Sakurai Y, Nishida H, et al. Characteristics of the novel potassium-competitive acid blocker vonoprazan fumarate (TAK-438). Adv Ther. 2016;33(7):1140–1157. doi:10.1007/s12325-016-0345-2
  • Qiao Y, Zhao J, Yue X, et al. Study on pharmacokinetics and bioequivalence of Vonoprazan pyroglutamate in rats by liquid chromatography with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1059:56–65. doi:10.1016/j.jchromb.2017.05.013
  • Hori Y, Matsukawa J, Takeuchi T, et al. A study comparing the antisecretory effect of TAK-438, a novel potassium-competitive acid blocker, with lansoprazole in animals. J Pharmacol Exp Ther. 2011;337(3):797–804. doi:10.1124/jpet.111.179556
  • Martinucci I, Blandizzi C, Bodini G, et al. Vonoprazan fumarate for the management of acid-related diseases. Expert Opin Pharmacother. 2017;18(11):1145–1152. doi:10.1080/14656566.2017.1346087
  • Kogame A, Takeuchi T, Nonaka M, et al. Disposition and metabolism of TAK-438 (vonoprazan fumarate), a novel potassium-competitive acid blocker, in rats and dogs. Xenobiotica. 2017;47(3):255–266. doi:10.1080/00498254.2016.1182667
  • Ohno Y, Hisaka A, Ueno M, et al. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47(10):669–680. doi:10.2165/00003088-200847100-00004
  • Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46(8):681–696. doi:10.2165/00003088-200746080-00005
  • Wang Y, Jin Y, Yun X, et al. Co-administration with simvastatin or lovastatin alters the pharmacokinetic profile of sinomenine in rats through cytochrome P450-mediated pathways. Life Sci. 2018;209:228–235. doi:10.1016/j.lfs.2018.08.012
  • Feidt DM, Klein K, Hofmann U, et al. Profiling induction of cytochrome p450 enzyme activity by statins using a new liquid chromatography-tandem mass spectrometry cocktail assay in human hepatocytes. Drug Metab Dispos. 2010;38(9):1589–1597. doi:10.1124/dmd.110.033886
  • Schuetz EG, Schuetz JD, Strom SC, et al. Regulation of human liver cytochromes P-450 in family 3A in primary and continuous culture of human hepatocytes. Hepatology. 1993;18(5):1254–1262. doi:10.1002/hep.1840180535
  • Kocarek TA, Dahn MS, Cai H, et al. Regulation of CYP2B6 and CYP3A expression by hydroxymethylglutaryl coenzyme A inhibitors in primary cultured human hepatocytes. Drug Metab Dispos. 2002;30(12):1400–1405. doi:10.1124/dmd.30.12.1400
  • Staudinger JL, Goodwin B, Jones SA, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci USA. 2001;98(6):3369–3374. doi:10.1073/pnas.051551698
  • Jones SA, Moore LB, Shenk JL, et al. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol. 2000;14(1):27–39. doi:10.1210/mend.14.1.0409
  • Berthold HK, Berneis K, Mantzoros CS, et al. Effects of simvastatin and ezetimibe on interleukin-6 and high-sensitivity C-reactive protein. Scand Cardiovasc J Suppl. 2013;47(1):20–27. doi:10.3109/14017431.2012.734635
  • Machavaram KK, Almond LM, Rostami-Hodjegan A, et al. A physiologically based pharmacokinetic modeling approach to predict disease-drug interactions: suppression of CYP3A by IL-6. Clin Pharmacol Ther. 2013;94(2):260–268. doi:10.1038/clpt.2013.79
  • Hirota T, Fujita Y, Ieiri I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol. 2020;16(9):809–822. doi:10.1080/17425255.2020.1801634
  • Echizen H. The first-in-class potassium-competitive acid blocker, vonoprazan fumarate: pharmacokinetic and pharmacodynamic considerations. Clin Pharmacokinet. 2016;55(4):409–418. doi:10.1007/s40262-015-0326-7
  • Gertz M, Houston JB, Galetin A. Physiologically based pharmacokinetic modeling of intestinal first-pass metabolism of CYP3A substrates with high intestinal extraction. Drug Metab Dispos. 2011;39(9):1633–1642. doi:10.1124/dmd.111.039248