489
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

Smilax glabra Roxb.: A Review of Its Traditional Usages, Phytochemical Constituents, Pharmacological Properties, and Clinical Applications

, , , , , , ORCID Icon, & show all
Pages 3621-3643 | Received 10 Jun 2022, Accepted 12 Sep 2022, Published online: 05 Dec 2023

References

  • Li Y, Li Y, Zeng P, Zhang W, Jiang W, Yang Z. Investigation on plant resources of Smilax glabra. Chin Trad Herb Drugs. 2002;33:85–87.
  • Zhang M, Hu ZZ, Luo HY. Analysis of clinical effects of minocycline combined with Tufuling in the treatment of serum resistance in patients with syphilis. World J Integr Tradit West Med. 2021;16:132–135. doi:10.13935/j.cnki.sjzx.210129
  • Ji XM. Brief introduction and origin of the dehumidification and detoxification effects of Smilax glabra in the past dynasties. Guide China Med. 2012;10:217–218.
  • Liu GH, Zhang YM. Analysis of the application of Smilax glabra in clinical practice. Guangming Tradit Chin Med. 2012;27:1680–1681.
  • Yi Y, Cao Z, Yang W, Hong W, Cao Y, Leng Z. Chemical studies of Smilax glabra (III): isolation and identification of smiglanin from Smilax glabra. Acta Pharm Sinica. 1995;30:718–720.
  • Chen G, Shen L, Jiang P. Chemical studies of Smilax glabra. J Beijing Univ TCM. 1996b;5:44.
  • Xu S, Shang M, Liu G, et al. Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity. Molecules. 2013;18:5265–5287. doi:10.3390/molecules18055265
  • Shu JC, Li LY, Zhou M, Yu JL, Peng CY. Three new flavonoid glycosides from Smilax glabra and their anti-inflammatory activity. Nat Prod Res. 2017. doi:10.1080/14786419.2017.1402314
  • Hu M. Studies on The Chemical Constituents and Anti-Inflammatory Activity of Smilax glabra Roxb [Master’s thesis]. Guangzhou University of Chinese Medicine, China; 2014.
  • Yuan J, Dou D, Chen Y, et al. Phenolic glycosides from rhizome of Smilax glabra. Chin Tradit Herbal Drugs. 2004a;35:12–14.
  • Zhang M, Li H, Yi Y, Yi Y, Li Y, Yu H. Studies on the chemical constituents of Smilax glabra. J Chin Mater Med. 1995;18:194–196.
  • Chen T, Li J, Cao J, Xu Q, Komatsu K, Namba T. A new flavanone isolated from rhizoma smilacis glabrae and the structural requirements of its derivatives for preventing immuno-logical hepatocyte damage. Planta Med. 1999;65:56–59. doi:10.1055/s-1999-13963
  • Qin R. Researched on Inhibitory Effects of Smilax Glabra on Tyrosinase [Master’s thesis]. Jilin Agricultural University, China; 2007.
  • Cao Z, Yi Y, Hong W, Lin Y. Studies on the chemical constituents of Smilax glabra Rox. (I) Chin Tradit Herbal Drugs. 1993;24:234–235.
  • Huo X, Gao Y, Liu J, Liu W, Zhao D. Determination of chemical constituents of the essential oil from Smilax glabra Roxb. Biotechnol. 2006;16:60–62.
  • Zhao J-W, Zheng C-Y, Wei H, Wang D-W, Zhu W. Proapoptic and immunotoxic effects of sulfur-fumigated polysaccharides from Smilax glabra Roxb. in raw264.7 cells. Chem Biol Interact. 2018;292:84–93. doi:10.1016/j.cbi.2018.07.009
  • Tewtrakul S, Itharat A, Rattanasuwan P. Anti-HIV-1 protease- and HIV-1 integrase activities of Thai medicinal plants known as Hua-Khao-Yen. J Ethnopharmacol. 2006;105:312–315. doi:10.1016/j.jep.2005.11.021
  • Willy S, Jadhav RN, Pimpliskar M, Vaidya V. Study of bactericidal potency of Smilax glabra rhizome. Int J Pharmacogn Phytochem Res. 2015;1:117–118.
  • Ooi LSM, Sun SSM, Wang H, Ooi VEC. New mannose-binding lectin isolated from the rhizome of Sarsaparilla Smilax glabra Roxb. (Liliaceae). J Agric Food Chem. 2004;52:6091–6095. doi:10.1021/jf030837o
  • She T, Zhao C, Feng J, et al. Sarsaparilla (Smilax glabra rhizome) extract inhibits migration and invasion of cancer cells by suppressing TGF-β1 pathway. PLoS One. 2015;10:e118287. doi:10.1371/journal.pone.0118287
  • Gao Y, Su Y, Qu L, et al. Mitochondrial apoptosis contributes to the anti-cancer effect of Smilax glabra Roxb. Toxicol Lett. 2011;207:112–120. doi:10.1016/j.toxlet.2011.08.024
  • Kwon OY, Ryu S, Choi JK. Smilax glabra Roxb. inhibits collagen induced adhesion and migration of PC3 and LNCaP prostate cancer cells through the inhibition of beta 1 integrin expression. Molecules. 2020;25:3006. doi:10.3390/molecules25133006
  • Jiang J, Wu F, Lu J, Lu Z, Xu Q. Anti-inflammatory activity of the aqueous extract from rhizoma smilacis glabrae. Pharmacol Res. 1997;36:309–314. doi:10.1006/phrs.1997.0234
  • Jiang J, Xu Q. Immunomodulatory activity of the aqueous extract from rhizome of Smilax glabra in the later phase of adjuvant-induced arthritis in rats. J Ethnopharmacol. 2003;85:53–59. doi:10.1016/S0378-8741(02)00340-9
  • Lu C, Zhu W, Wang M, Xu X, Lu C. Antioxidant and anti-inflammatory activities of phenolic-enriched extracts of Smilax glabra. Evid Based Compl Alt Med. 2014;1–8. doi:10.1155/2014/910438
  • Zhao X, Chen R, Shi Y, Zhang X, Xia D. Antioxidant and anti-inflammatory activities of six flavonoids from Smilax glabra Roxb. Molecules. 2020;25:5295. doi:10.3390/molecules25225295
  • Sang H, Gu J, Yuan J, Zhang M, Jia X, Feng L. The protective effect of Smilax glabra extract on advanced glycation end products-induced endothelial dysfunction in HUVECs via RAGE-ERK1/2-NF-κB pathway. J Ethnopharmacol. 2014;155:785–795. doi:10.1016/j.jep.2014.06.028
  • Cai Y, Tu J, Pan S, et al. Medicinal effect and its JP2/RyR2-based mechanism of Smilax glabra flavonoids on angiotensin II-induced hypertrophy model of cardiomyocytes. J Ethnopharmacol. 2015;169:435–440. doi:10.1016/j.jep.2015.04.026
  • Shou Q, Pan S, Tu J, et al. Modulation effect of Smilax glabra flavonoids on ryanodine receptor mediated intracellular Ca2+ release in cardiomyoblast cells. J Ethnopharmacol. 2013;150:389–392. doi:10.1016/j.jep.2013.08.009
  • Mao QW, Zhou GY. Several food additives optimized the quality and flavor of the Smilax glabra Roxb tea. Food Fermentation Sci Technol. 2020;56(06):39–47.
  • Li Q, Lan T, He S, et al. A network pharmacology-based approach to explore the active ingredients and molecular mechanism of Lei-gong-gen formula granule on a spontaneously hypertensive rat model. Chin Med. 2021;16(1). doi:10.1186/s13020-021-00507-1
  • Wu YF. The study about resource diversity of wild Liliaceae medicinal plants in nature reserve-jiufu mountain. Forest By-Product Speciality China. 2017;05:72–78.
  • Lan T, Li Q, Chang M, et al. Lei-gong-gen formula granule attenuates hyperlipidemia in rats via cGMP-PKG signaling pathway. J Ethnopharmacol. 2020;260(1):112989. doi:10.1016/j.jep.2020.112989
  • Itharat A, Houghton PJ, Eno-Amooquaye E, Burke PJ, Sampson JH, Raman A. In vitro cytotoxic activity of Thai medicinal plants used traditionally to treat cancer. J Ethnopharmacol. 2004;90:33–38. doi:10.1016/j.jep.2003.09.014
  • Christopher R, Nyandoro SS, Chacha M, De Koning CB. A new cinnamoyl glycoflavonoid, antimycobacterial and antioxidant constituents from Heritiera littoralis leaf extracts. Nat Prod Res. 2014;28:351–358. doi:10.1080/14786419.2013.863202
  • Li YP, Li YH, Zhong JD, Li RT. Antioxidant phenolic glycoside and flavonoids from Pieris japonica. J Asian Nat Prod Res. 2013;15:875–879. doi:10.1080/10286020.2013.803475
  • Liu J, Li X, Lin J, et al. Sarcandra glabra (Caoshanhu) protects mesenchymal stem cells from oxidative stress: a bioevaluation and mechanistic chemistry. BMC Compl Altern Med. 2016;16:423. doi:10.1186/s12906-016-1383-7
  • Lu CL, Zhu W, Wang M, Xu XJ, Lu CJ. Antioxidant and anti-inflammatory activities of phenolic-enriched extracts of Smilax glabra. Evid Based Complement Alternat Med. 2014;2014:910438.
  • Petacci F, Freitas SS, Brunetti IL, Khalil NM. Inhibition of peroxidase activity and scavenging of reactive oxygen species by astilbin isolated from Dimorphandra mollis (Fabaceae, Caesalpinioideae). Biol Res. 2010;43:63–74. doi:10.4067/S0716-97602010000100008
  • Tung YT, Lin LC, Liu YL, et al. Antioxidative phytochemicals from Rhododendron oldhamii Maxim. Leaf extracts reduce serum uric acid levels in potassium oxonate-induced hyperuricemic mice. BMC Complement Alternat Med. 2015;15:423. doi:10.1186/s12906-015-0950-7
  • Zhang Q-F, Zhang Z-R, Cheung H-Y. Antioxidant activity of Rhizoma Smilacis Glabrae extracts and its key constituent-astilbin. Food Chem. 2009;115:297–303. doi:10.1016/j.foodchem.2008.11.053
  • Haraguchi H, Mochida Y, Sakai S, et al. Protection against oxidative damage by dihydroflavonols in Engelhardtia chrysolepis. Biosci Biotechnol Biochem. 1996;60:945–948. doi:10.1271/bbb.60.945
  • Diao H, Kang Z, Han F, Jiang W. Astilbin protects diabetic rat heart against ischemia-reperfusion injury via blockade of HMGB1-dependent NF-kappaB signaling pathway. Food Chem Toxicol. 2014;63:104–110. doi:10.1016/j.fct.2013.10.045
  • Han LK, Ninomiya H, Taniguchi M, Baba K, Kimura Y, Okuda H. Norepinephrine-augmenting lipolytic effectors from Astilbe thunbergii rhizomes. J Nat Prod. 1998;61:1006–1011. doi:10.1021/np980107o
  • Dimech GS, Soares LA, Ferreira MA, de Oliveira AG, Carvalho Mda C, Ximenes EA. Phytochemical and antibacterial investigations of the extracts and fractions from the stem bark of Hymenaea stigonocarpa Mart. ex Hayne and effect on ultrastructure of Staphylococcus aureus induced by hydroalcoholic extract. ScientificWorld J. 2013;2013:862763. doi:10.1155/2013/862763
  • Moulari B, Pellequer Y, Chaumont JP, Guillaume YC, Millet J. In vitro antimicrobial activity of the leaf extract of Harungana madagascariensis Lam. Ex Poir. (Hypericaceae) against strains causing otitis externa in dogs and cats. Acta Vet Hung. 2007;55:97–105. doi:10.1556/avet.55.2007.1.10
  • Moulari B, Pellequer Y, Lboutounne H, et al. Isolation and in vitro antibacterial activity of astilbin, the bioactive flavanone from the leaves of Harungana madagascariensis Lam. ex Poir. (Hypericaceae). J Ethnopharmacol. 2006;106:272–278. doi:10.1016/j.jep.2006.01.008
  • Wang J, Shi Y, Jing S, Dong H, Wang D, Wang T. Astilbin inhibits the activity of Sortase A from Streptococcus mutans. Molecules. 2019;24:465. doi:10.3390/molecules24030465
  • Yang X, Sun Y, Xu Q, Guo Z. Synthesis and immunosuppressive activity of Lrhamnopyranosyl flavonoids. Org Biomol Chem. 2006;4:2483–2491. doi:10.1039/b604521a
  • Zheng ZG, Duan TT, He B, et al. Macrophage biospecific extraction and HPLC-ESI-MSn analysis for screening immunological active components in Smilacis Glabrae Rhizoma. JPharmaceut Biomed Anal. 2013;77:44–48. doi:10.1016/j.jpba.2013.01.003
  • Zou S, Shen X, Tang Y, Fu Z, Zheng Q, Wang Q. Astilbin suppresses acute heart allograft rejection by inhibiting maturation and function of dendritic cells in mice. Transplant Proc. 2010;42:3798–3802. doi:10.1016/j.transproceed.2010.06.031
  • Guo J, Qian F, Li J, Xu Q, Chen T. Identification of a new metabolite of astilbin, 3’-O-methylastilbin, and its immunosuppressive activity against contact dermatitis. Clin Chem. 2007;53:465–471. doi:10.1373/clinchem.2006.077297
  • Tang J, Guo J, Fan J, et al. Metabolite profiling of astilbin in rat sera using UPLC/MS(E) and impact of its metabolites on immunosuppressive activity. J Chromatogr B, Analyt Technol Biomed Life Sci. 2013;929:56–62. doi:10.1016/j.jchromb.2013.04.018
  • Guo L, Liu W, Lu T, et al. Decrease of functional activated T and B cells and treatment of glomerulonephritis in lupus-prone mice using a natural flavonoid astilbin. PLoS One. 2015;10:e0124002. doi:10.1371/journal.pone.0124002
  • Chen F, Zhu X, Sun Z, Ma Y. Astilbin inhibits high glucose-induced inflammation and extracellular matrix accumulation by suppressing the TLR4/MyD88/NF-κB pathway in rat glomerular mesangial cells. Front Pharmacol. 2018;9:1187. doi:10.3389/fphar.2018.01187
  • Huang H, Cheng Z, Shi H, Xin W, Wang TT, Yu LL. Isolation and characterization of two flavonoids, engeletin and astilbin, from the leaves of Engelhardia roxburghiana and their potential anti-inflammatory properties. J Agric Food Chem. 2011;59:4562–4569. doi:10.1021/jf2002969
  • Lu CL, Zhu YF, Hu MM, et al. Optimization of astilbin extraction from the rhizome of Smilax glabra, and evaluation of its antiinflammatory effect and probable underlying mechanism in lipopolysaccharide induced RAW264.7 macrophages. Molecules. 2015;20:625–644. doi:10.3390/molecules20010625
  • Ruangnoo S, Jaiaree N, Makchuchit S, Panthong S, Thongdeeying P, Itharat A. An in vitro inhibitory effect on RAW 264.7 cells by anti-inflammatory compounds from Smilax corbularia Kunth. Asian Pac J Allergy Immunol. 2012;30:268–274.
  • Zou W, Zhou H, Hu J, et al. Rhizoma Smilacis Glabrae inhibits pathogen-induced upper genital tract inflammation in rats through suppression of NF-kappaB pathway. J Ethnopharmacol. 2017;202:103–113. doi:10.1016/j.jep.2017.02.034
  • Yuan J, Dou D, Chen Y, et al. Studies on dihydroflavonol glycosides from rhizome of Smilax glabra. China J Chin Mater Med. 2004b;29:867–870.
  • Wu B, Ma Y, Yuan J, Sun Q. Isolation and identification of chemical constituents from Smilax glabra Roxb. J Shenyang Pharm Univ. 2010;2:116–119.
  • Yi Y, Cao Z, Yang D, Cao Y, Wu Y, Zhao S. Studies on the chemical constituents of Smilax glabra (IV). Acta Pharm Sinica. 1998a;33:74–76. doi:10.16438/j.0513-4870.1998.11.016
  • Gao X, Xu YX, Janakiraman N, Chapman RA, Gautam SC. Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production. Biochem Pharmacol. 2001;62:1299–1308. doi:10.1016/S0006-2952(01)00775-4
  • Fuggetta MP, Bordignon V, Cottarelli A, et al. Downregulation of proinflammatory cytokines in HTLV-1-infected T cells by Resveratrol. J Exp Clin Cancer Res. 2016;35:118. doi:10.1186/s13046-016-0398-8
  • Zhang C, Zhao XH, Yang L, et al. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, microflora, and barrier integrity in broilers. Poult Sci. 2017;96:4325–4332. doi:10.3382/ps/pex266
  • Zhang H, Chen Y, Chen Y, et al. Comparison of the protective effects of resveratrol and pterostilbene against intestinal damage and redox imbalance in weanling piglets. J Anim Sci Biotechnol. 2020;11:52. doi:10.1186/s40104-020-00460-3
  • Xian Y, Gao Y, Lv W, et al. Resveratrol prevents diabetic nephropathy by reducing chronic inflammation and improving the blood glucose memory effect in non-obese diabetic mice. Naunyn Schmiedebergs Arch Pharmacol. 2020;393:2009–2017. doi:10.1007/s00210-019-01777-1
  • He S, Chen L, He Y, et al. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, barrier integrity and inflammation in yellow-feather broilers. Anim Prod Sci. 2020;60:1547.
  • Zhang C, Chen K, Zhao X, Geng Z. Protective effects of resveratrol against high ambient temperature-induced spleen dysplasia in broilers through modulating splenic redox status and apoptosis. J Sci Food Agric. 2018;98:5409–5417. doi:10.1002/jsfa.9084
  • He S, Yu Q, He Y, Hu R, Xia S, He J. Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers. Poult Sci. 2019;98:6378–6387. doi:10.3382/ps/pez471
  • Brockmueller A, Sameri S, Liskova A, et al. Resveratrol’s anti-cancer effects through the modulation of tumor glucose metabolism. Cancers. 2021;13:188. doi:10.3390/cancers13020188
  • Vestergaard M, Ingmer H. Antibacterial and antifungal properties of resveratrol. Int J Antimicrob Agents. 2019;53(6):716–723. doi:10.1016/j.ijantimicag.2019.02.015
  • Wang J, Zhang X, Gao L, et al. The synergistic antifungal activity of resveratrol with azoles against Candida albicans. Lett Appl Microbiol. 2021;72(6):688–697. doi:10.1111/lam.13458
  • Huang HH, Liao D, Zhou GH, et al. Antiviral activities of resveratrol against rotavirus in vitro and in vivo. Phytomedicine. 2020;77:153230. doi:10.1016/j.phymed.2020.153230
  • Hui Y, Tang Cyluo C, Cheng L, et al. Resveratrol attenuates the cytotoxicity induced by amyloid-B1-42 in PC12 cells by upregulating heme oxygenase-1 via the PI3K/Akt/Nrf2 pat hway. Neurochem Res. 2018;43(2):297–305. doi:10.1007/s11064-017-2421-7
  • Sarroca S, Gatius A, Rodriguez-Farre E, et al. Resveratrol confers neuroprotection against high-fat diet in a mouse model of Alzheimer’s disease via modulation of proteolytic mechanisms. J Nutr Biochem. 2021;89:108569. doi:10.1016/j.jnutbio.2020.108569
  • Qiao Q, Gao W, Zhang L, et al. Metabolic syndrome and cardiovascular disease. Ann Clin Biochem. 2007;44:232–263. doi:10.1258/000456307780480963
  • Wilson PW, D’Agostino RB, Parise H, et al. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation. 2005;112:3066–3072. doi:10.1161/CIRCULATIONAHA.105.539528
  • Dokken BB. The Pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids. Diabetes Spectr. 2008;21(3):160–165. doi:10.2337/diaspect.21.3.160
  • Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6(13):1246–1258. doi:10.4239/wjd.v6.i13.1246
  • Mozaffarian D. Saturated fatty acids and type 2 diabetes: more evidence to re-invent dietary guidelines. Lancet Diabetes Endocrinol. 2014;2(10):770–772. doi:10.1016/S2213-8587(14)70166-4
  • Ebbesson SO, Voruganti VS, Higgins PB, et al. Fatty acids linked to cardiovascular mortality are associated with risk factors. Int J Circumpolar Health. 2015;74:28055. doi:10.3402/ijch.v74.28055
  • Briggs MA, Petersen KS, Kris-Etherton PM. Saturated fatty acids and cardiovascular disease: replacements for saturated fat to reduce cardiovascular risk. Healthcare. 2017;5(2):29. doi:10.3390/healthcare5020029
  • Knowles CJ, Cebova M, Pinz IM, et al. Palmitate diet-induced loss of cardiac caveolin-3: a novel mechanism for lipid-induced contractile dysfunction. PLoS One. 2013;8(4):e61369. doi:10.1371/journal.pone.0061369
  • Kwan HY, Fu X, Liu B, et al. Subcutaneous adipocytes promote melanoma cell growth by activating the Akt signaling pathway: role of palmitic acid. J Biol Chem. 2014;289(44):30525–30537. doi:10.1074/jbc.M114.593210
  • Wong RH, Chang I, Hudak CSS, et al. A role of DNA-PK for the metabolic gene regulation in response to insulin. Cell. 2009;136:1056–1072. doi:10.1016/j.cell.2008.12.040
  • Wang Y, Viscarra J, Kim S-J, et al. Transcriptional regulation of hepatic lipo-genesis. Nature Reviews Mol Cell Biol. 2015;16:678–689. doi:10.1038/nrm4074
  • DeBerardinis RJ, Mancuso A, Daikhin E, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA. 2007;104:19345–19350. doi:10.1073/pnas.0709747104
  • Kwan HY, Chao X, Su T, et al. Dietary lipids and adipocytes: potential therapeutic targets in cancers. J Nutr Biochem. 2015;26:303–311. doi:10.1016/j.jnutbio.2014.11.001
  • Little JL, Kridel SJ. Fatty acid synthase activity in tumor cells. Subcell Biochem. 2008;49:169–194.
  • Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016;16:732–749. doi:10.1038/nrc.2016.89
  • Kwan HY, Yang Z, Fong W-F, et al. The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells. J Gastroenterol. 2013;48:182–192. doi:10.1007/s00535-012-0612-1
  • Ventura R, Mordec K, Waszczuk J, et al. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine. 2015;2:808–824. doi:10.1016/j.ebiom.2015.06.020
  • Chen T, Li J, Xu Q. Phenylpropanoid glycosides from Smilax glabra. Phytochemistry. 2000;53:1051–1055. doi:10.1016/S0031-9422(99)00522-1
  • Lu C, Zhu W, Wang D, et al. Inhibitory effects of chemical compounds isolated from the rhizome of Smilax glabra on nitric oxide and tumor necrosis factor-α production in lipopolysaccharide-induced RAW264.7 cell. Evid Based Compl Alt Med. 2015;1–9. doi:10.1155/2015/602425
  • Yuan J. Studies on the Constituents of Smilax glabra Roxb. and Tinospora sinensis (Lour) [Merr.Ph.D. thesis]. Shenyang Pharmaceutical University, China; 2005.
  • Li Y, Yi Y, Tang H, Xiao K. Chemical studies of Smilax glabra. Chin Tradit Herbal Drugs. 1996;12:712–714.
  • Sa F, Gao J, Fung K, Zheng Y, Lee SM, Wang Y. Anti-proliferative and pro-apoptotic effect of Smilax glabra Roxb. extract on hepatoma cell lines. Chem Biol Interact. 2008;171:1–14. doi:10.1016/j.cbi.2007.08.0122
  • Su H, Liu Y. Determination of yam in Rhizoma Smilacis glabrae, by HPLC. J Liaoning Univ TCM. 2008;10:159–160.
  • Zhou Y, Lu JQ, Cui L, Meng JM, Xiao YS. Analysis of volatile components in Smilax glabra Roxb and its adulterant. China Pharmacist. 2018;21:1865–1867.
  • She T, Qu L, Wang L, et al. Sarsaparilla (Smilax Glabra rhizome) extract inhibits cancer cell growth by S phase arrest, apoptosis, and autophagy via redox-dependent ERK1/2 pathway. Cancer Prev Res. 2015b;8:464–474. doi:10.1158/1940-6207.capr-14-0372
  • Feng Y, Chen JJ, Fang JG, et al. Experimental study on the anti-cytomegalovirus effect of Smilax glabra in vitro. Maternal Child Health Care China. 2010;25(36):5457–5459.
  • Ooi LS, Wong EY, Chiu LC, Sun SS, Ooi VE. Antiviral and anti-proliferative glycoproteins from the rhizome of Smilax glabra Roxb (Liliaceae). Am J Chin Med. 2008;36:185–195. doi:10.1142/s0192415x08005692
  • Huang LP, Deng J, Chen GT, et al. The anti-hyperuricemic effect of four astilbin stereoisomers in Smilax glabra on hyperuricemic mice. J Ethnopharmacol. 2019;238:111777. doi:10.1016/j.jep.2019.03.004
  • Li J, Cheng S, Dong DY, et al. Primary investigation for material basis of Smilax glabra for detoxification of heavy metal Pb. Chin Trad Herbal Drugs. 2022;53(01):117–125.
  • Chang S. Study on the substance basis of toxicity of Pb heavy metal detoxicate by Smilax glabra Roxb. Jiangxi University of Chinese Medicine; 2021.
  • Liao W. Study of speciation and bioaccessibility of arsenic and mercury in food. Chin Acad Sci. 2019;45:e34.
  • Xia D, Fan Y, Zhang P, Fu Y, Ju M, Zhang X. Protective effects of the flavonoid-rich fraction from rhizomes of Smilax glabra Roxb. on carbon tetrachloride-induced hepatotoxicity in rats. J Membrane Biol. 2013;246:479–485. doi:10.1007/s00232-013-9560-9
  • Luo Q, Cai Z, Tu J, Ling Y, Wang DJ, Cai Y. Total flavonoids from Smilax glabra Roxb blocks epithelial‐mesenchymal transition and inhibits renal interstitial fibrosis by targeting mir‐21/PTEN signaling. J Cell Biochem. 2019;120:12. doi:10.1002/jcb.27668
  • Shi Y, Tian C, Yu X, et al. Protective effects of Smilax glabra Roxb. against lead-induced renal oxidative stress, inflammation and apoptosis in weaning rats and HEK-293 cells. Front Pharmacol. 2020;11:556248. doi:10.3389/fphar.2020.556248
  • Li GS, Jiang WL, Yue XD, et al. Effect of astilbin on experimental diabetic nephropathy in vivo and in vitro. Planta Med. 2009;75:1470–1475. doi:10.1055/s-0029-1185802
  • Chen CL, Yang M, Chen YJ, et al. Astilbin-induced inhibition of the pi3k/akt signaling pathway decelerates the progression of osteoarthritis. Exp Ther Med. 2020. doi:10.3892/etm.2020.9048
  • Yue S. Observation on curative effect of Smilax glabra combined with penicillin in the treatment of 26 cases of syphilis serum resistance. Nei Mongol J Trad Chin Med. 2017;06:87.
  • Wang T, Ye L. Observation of therapeutic effect of compound Qingdai pills and BCG polysaccharide nucleic acid injection in treating psoriasis of wind-heat and blood dryness and the influence of serum inflammatory factors. World Latest Med Info. 2018;18:7–8. doi:10.19613/j.cnki.1671-3141.2018.05.004
  • He YM, Yang Y, Liao CQ, Li CX, Xiong X. A clinical study of compound Qingdai Pill combined with Acitretin and calcipotriol in the treatment of patients with moderate to severe psoriasis vulgaris. Chin J Derm. 2016;30:769–770. doi:10.13735/j.cjdv.1001-7089.201512007
  • Han FH, Li SH, Li GD. Clinical study of compound Qingdai pill combined with compound antaisu in treatment of psoriasis. Med Innov China. 2014;11:097–099. doi:10.3969/j.issn.1674-4985.2014.29.035
  • Ping L, Yang F, Gao SP. Clinical observation on Xiegan Liangxue Jiedu decoction in the treatment of plaque psoriasis. Acad J Shanghai Univ Trad Chin Med. 2018;32:38–40. doi:10.16306/j.1008-861x.2018.04.009