302
Views
3
CrossRef citations to date
0
Altmetric
REVIEW

The Novel Compounds with Biological Activity Derived from Soil Fungi in the Past Decade

, , ORCID Icon &
Pages 3493-3555 | Published online: 05 Dec 2023

References

  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3):770–803. doi:10.1021/acs.jnatprod.9b01285
  • Bräse S, Encinas A, Keck J, Nising CF. Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev. 2009;109(9):3903–3990. doi:10.1021/cr050001f
  • Pettit RK. Soil DNA libraries for anticancer drug discovery. Cancer Chemother Pharmacol. 2004;54(1):1–6. doi:10.1007/s00280-004-0771-8
  • Nazir R, Warmink JA, Boersma H, van Elsas JD. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol. 2010;71(2):169–185. doi:10.1111/j.1574-6941.2009.00807.x
  • Wu P, Yao L, Xu L, Xue J, Wei X. Bisacremines A-D, dimeric acremines produced by a soil-derived Acremonium persicinum strain. J Nat Prod. 2015;78(9):2161–2166. doi:10.1021/np501037x
  • Ji Y, Zhou Q, Liu G, et al. New protein tyrosine phosphatase inhibitors from fungus Aspergillus gorakhpurensis F07ZB1707. RSC Adv. 2021;11(17):10144–10153. doi:10.1039/D1RA00788B
  • Keller NP, Turner G, Bennett JW. Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol. 2005;3(12):937–947. doi:10.1038/nrmicro1286
  • Evidente A, Kornienko A, Cimmino A, et al. Fungal metabolites with anticancer activity. Nat Prod Rep. 2014;31(5):617–627. doi:10.1039/C3NP70078J
  • Hu Z, Ye Y, Zhang Y. Large-scale culture as a complementary and practical method for discovering natural products with novel skeletons. Nat Prod Rep. 2021;38(10):1775–1793. doi:10.1039/D0NP00069H
  • Eamvijarn A, Kijjoa A, Bruyere C, et al. Secondary metabolites from a culture of the fungus Neosartorya pseudofischeri and their in vitro cytostatic activity in human cancer cells. Planta Med. 2012;78(16):1767–1776. doi:10.1055/s-0032-1315301
  • Ma L, Liu W, Shen L, et al. Spiroketals, isocoumarin, and indoleformic acid derivatives from saline soil derived fungus Penicillium raistrickii. Tetrahedron. 2012;68(10):2276–2282. doi:10.1016/j.tet.2012.01.054
  • Wang C, Liu M, Wei J, Wang H, Lin X. Chemical metabolites from fungus PHF-9 and their anti-tumor activity. Chin J New Drugs. 2012;21(14):96–100.
  • Wang X, You J, King JB, Powell DR, Cichewicz RH. Waikialoid A suppresses hyphal morphogenesis and inhibits biofilm development in pathogenic Candida albicans. J Nat Prod. 2012;75(4):707–715. doi:10.1021/np2009994
  • Gao H, Liu W, Zhu T, et al. Diketopiperazine alkaloids from a mangrove rhizosphere soil derived fungus Aspergillus effuses H1-1. Org Biomol Chem. 2012;10(47):9501–9506. doi:10.1039/c2ob26757h
  • Gao H, Zhu T, Li D, Gu Q, Liu W. Prenylated indole diketopiperazine alkaloids from a mangrove rhizosphere soil derived fungus Aspergillus effuses H1-1. Arch Pharm Res. 2013;36(8):952–956. doi:10.1007/s12272-013-0107-5
  • Eamvijarn A, Gomes N, Dethoup T, et al. Bioactive meroditerpenes and indole alkaloids from the soil fungus Neosartorya fischeri (KUFC 6344), and the marine-derived fungi Neosartorya laciniosa (KUFC 7896) and Neosartorya tsunodae (KUFC 9213). Tetrahedron. 2013;69(40):8583–8591. doi:10.1016/j.tet.2013.07.078
  • Fan Y, Wang Y, Liu P, et al. Indole-diterpenoids with anti-H1N1 activity from the aciduric fungus Penicillium camemberti OUCMDZ-1492. J Nat Prod. 2013;76(7):1328–1336. doi:10.1021/np400304q
  • Rukachaisirikul V, Rungsaiwattana N, Klaiklay S, et al. Indole-benzodiazepine-2,5-dione derivatives from a soil fungus Aspergillus sp. PSU-RSPG185. Tetrahedron. 2013;69(52):11116–11121. doi:10.1016/j.tet.2013.11.009
  • Yang B, Dong J, Lin X, Zhou X, Zhang Y, Liu Y. New prenylated indole alkaloids from fungus Penicillium sp. derived of mangrove soil sample. Tetrahedron. 2014;70(25):3859–3863. doi:10.1016/j.tet.2014.04.043
  • Meng LH, Du FY, Li XM, et al. Indolediketopiperazines of the isoechinulin class from Eurotium rubrum MA-150, a fungus obtained from marine mangrove-derived rhizospheric soil. J Nat Prod. 2015;78(4):909–913. doi:10.1021/np5007839
  • Wang J, He W, Qin X, et al. Three new indolyl diketopiperazine metabolites from the Antarctic soil-derived fungus Penicillium sp. SCSIO 05705. RSC Adv. 2015;5(84):68736–68742. doi:10.1039/C5RA10828D
  • Lacey HJ, Vuong D, Pitt JI, Lacey E, Piggott AM. Kumbicins A–D: bis-indolyl benzenoids and benzoquinones from an Australian soil fungus, Aspergillus kumbius. Aust J Chem. 2016;69(2):152. doi:10.1071/CH15488
  • An X, Feng BM, Chen G, Chen SF, Wang HF, Pei YH. Two new asterriquinols from Aspergillus sp. CBS-P-2 with anti-inflammatory activity. J Asian Nat Prod Res. 2016;18(8):737–743. doi:10.1080/10286020.2016.1161613
  • Kildgaard S, de Medeiros LS, Phillips E, et al. Cyclopiamines C and D: epoxide spiroindolinone alkaloids from Penicillium sp. CML 3020. J Nat Prod. 2018;81(4):785–790. doi:10.1021/acs.jnatprod.7b00825
  • Xu LL, Hai P, Zhang SB, et al. Prenylated indole diterpene alkaloids from a mine-soil-derived Tolypocladium sp. J Nat Prod. 2019;82(2):221–231. doi:10.1021/acs.jnatprod.8b00589
  • Guo QF, Yin ZH, Zhang JJ, et al. Chaetomadrasins A and B, two new cytotoxic cytochalasans from desert soil-derived fungus Chaetomium madrasense 375. Molecules. 2019;24(18):3240. doi:10.3390/molecules24183240
  • Zheng YY, Shen NX, Liang ZY, Shen L, Chen M, Wang CY. Paraherquamide J, a new prenylated indole alkaloid from the marine-derived fungus Penicillium janthinellum HK1-6. Nat Prod Res. 2020;34(3):378–384. doi:10.1080/14786419.2018.1534105
  • Zaman KAU, Hu Z, Wu X, Cao S. Tryptoquivalines W and X, two new compounds from a Hawaiian fungal strain and their biological activities. Tetrahedron Lett. 2020;61(14):151730. doi:10.1016/j.tetlet.2020.151730
  • Liu J, Hu B, Gao Y, et al. Bioactive tyrosine-derived cytochalasins from fungus Eutypella sp. D-1. Chem Biodivers. 2014;11(5):800–806. doi:10.1002/cbdv.201300218
  • Rukachaisirikul V, Rungsaiwattana N, Klaiklay S, Phongpaichit S, Borwornwiriyapan K. Sakayaroj, J., g-Butyrolactone, cytochalasin, cyclic carbonate, eutypinic acid, and phenalenone derivatives from the soil fungus Aspergillus sp. PSU-RSPG185. J Nat Prod. 2014;77(11):2375–2382. doi:10.1021/np500324b
  • Kang HH, Zhong MJ, Ma LY, Rong XG, Liu DS, Liu WZ. Iizukines C-E from a saline soil fungus Aspergillus iizukae. Bioorg Chem. 2019;91:103167. doi:10.1016/j.bioorg.2019.103167
  • Kawahara T, Itoh M, Izumikawa M, et al. New phenylspirodrimane metabolites MBJ-0030, MBJ-0031, and MBJ-0032 isolated from the soil fungal strain Stachybotrys sp. f23793. Biosci Biotechnol Biochem. 2020;84(8):1570–1575. doi:10.1080/09168451.2020.1757402
  • Zhao C, Liu G, Liu X, Zhang L, Li L, Liu L. Pycnidiophorones A–D, four new cytochalasans from the wetland derived fungus Pycnidiophora dispersa. RSC Adv. 2020;10(66):40384–40390. doi:10.1039/D0RA08072A
  • Jiang CX, Yu B, Miao YM, et al. Indole Alkaloids from a Soil-Derived. Clonostachys Rosea J Nat Prod. 2021;84(9):2468–2474. doi:10.1021/acs.jnatprod.1c00457
  • Wang H, Dai H, Heering C, et al. Targeted solid phase fermentation of the soil dwelling fungus Gymnascella dankaliensis yields new brominated tyrosine-derived alkaloids. RSC Adv. 2016;6(85):81685–81693. doi:10.1039/C6RA14554J
  • Zhang SY, Li JS, Zhang H, et al. Two new threonine-containing metabolites from fungus Curvularia inaequalis strain HS-FG-257. Nat Prod Res. 2020;1:1–6.
  • Yao G, Sebisubi F, Voo L, Ho C, Tan G, Chang L. Citrinin derivatives from the soil filamentous fungus Penicillium sp. H9318. J Braz Chem Soc. 2011;22(6):1125–1129. doi:10.1590/S0103-50532011000600018
  • Jiang CX, Li J, Zhang JM, et al. Isolation, identification, and activity evaluation of chemical constituents from soil fungus Fusarium avenaceum SF-1502 and endophytic fungus Fusarium proliferatum AF-04. J Agric Food Chem. 2019;67(7):1839–1846. doi:10.1021/acs.jafc.8b05576
  • Feng QM, Feng Y, Zhang TY, et al. (±) Benzomalvins E isolated from Penicillium sp. SYPF 8411 in the rhizosphere soil of Codonopsis clematidea. Nat Prod Res. 2020;34(13):1884–1890. doi:10.1080/14786419.2019.1569004
  • Paluka J, Kanokmedhakul K, Soytong M, Soytong K, Kanokmedhakul S. Meroditerpene pyrone, tryptoquivaline and brasiliamide derivatives from the fungus Neosartorya pseudofischeri. Fitoterapia. 2019;137:104257. doi:10.1016/j.fitote.2019.104257
  • Murakami S, Hayashi N, Inomata T, Kato H, Hitora Y, Tsukamoto S. Induction of secondary metabolite production by fungal co-culture of Talaromyces pinophilus and Paraphaeosphaeria sp. J Nat Med. 2020;74(3):545–549. doi:10.1007/s11418-020-01400-1
  • Phainuphong P, Rukachaisirikul V, Saithong S, et al. pyrrolidine and piperidine derivatives from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. Bioorg Med Chem. 2018;26(15):4502–4508. doi:10.1016/j.bmc.2018.07.036
  • Lin Y, Wang L, Wang Y, Wang W, Hao J, Zhu W. Bioactive Natural Products of Aspergillus sp. OUCMDZ-1914, an Aciduric Fungus from the Mangrove Soils. Chin J Organic Chem. 2015;35(9):1955. doi:10.6023/cjoc201504007
  • Ishii T, Nonaka K, Sugawara A, et al. Cinatrins D and E, and virgaricin B, three novel compounds produced by a fungus, Virgaria boninensis FKI-4958. J Antibiot. 2015;68(10):633–637. doi:10.1038/ja.2015.45
  • Teles AP, Takahashi JA. Paecilomide, a new acetylcholinesterase inhibitor from Paecilomyces lilacinus. Microbiol Res. 2013;168(4):204–210. doi:10.1016/j.micres.2012.11.007
  • Abdel-Wahab NM, Harwoko H, Muller WEG, et al. Cyclic heptapeptides from the soil-derived fungus Clonostachys rosea. Bioorg Med Chem. 2019;27(17):3954–3959. doi:10.1016/j.bmc.2019.07.025
  • Miyano R, Matsuo H, Mokudai T, et al. Trichothioneic acid, a new antioxidant compound produced by the fungal strain Trichoderma virens FKI-7573. J Biosci Bioeng. 2020;129(4):508–513. doi:10.1016/j.jbiosc.2019.11.007
  • Pittayakhajonwut P, Dramae A, Intaraudom C, et al. Two new drimane sesquiterpenes, fudecadiones A and B, from the soil fungus Penicillium sp. Planta Med. 2011;77(1):74–76. doi:10.1055/s-0030-1250057
  • Zhang SY, Li ZL, Guan LP, et al. Structure determination of two new trichothecenes from a halotolerant fungus Myrothecium sp. GS-17 by NMR spectroscopy. Magnetic Resonance Chem. 2012;50(9):632–636. doi:10.1002/mrc.3845
  • Meng LH, Li XM, Liu Y, Wang BG. Penicibilaenes A and B, sesquiterpenes with a tricyclo[6.3.1.01,5]dodecane skeleton from the marine isolate of Penicillium bilaiae MA-267. Org Lett. 2014;16(23):6052–6055. doi:10.1021/ol503046u
  • Daengrot C, Rukachaisirikul V, Tansakul C, et al. Eremophilane sesquiterpenes and diphenyl thioethers from the soil fungus Penicillium copticola PSU-RSPG138. J Nat Prod. 2015;78(4):615–622. doi:10.1021/np5005328
  • Liu D, Huang Y, Li C, et al. A new sesquiterpenoid derivative from the coastal saline soil fungus Aspergillus fumigatus. Records Natural Products. 2016;10(6):708–713.
  • Wang J, Wei X, Qin X, et al. Antiviral merosesquiterpenoids produced by the Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J Nat Prod. 2016;79(1):59–65. doi:10.1021/acs.jnatprod.5b00650
  • Wang Y, Wang Y, Wu AA, et al. New 12,8-Eudesmanolides from Eutypella sp. 1-15. J Antibiot (Tokyo). 2017;70(10):1029–1032. doi:10.1038/ja.2017.89
  • Rukachaisirikul V, Chinpha S, Phongpaichit S, Saikhwan N, Sakayaroj J, Preedanon S. Sesquiterpene and monoterpene derivatives from the soil-derived fungus Trichoderma reesei PSU-SPSF013. Phytochem Lett. 2019;30:124–129. doi:10.1016/j.phytol.2019.01.023
  • Tran TD, Wilson BAP, Henrich CJ, et al. Structure elucidation and absolute configuration of metabolites from the soil-derived fungus Dictyosporium digitatum using spectroscopic and computational methods. Phytochemistry. 2020;173:112278. doi:10.1016/j.phytochem.2020.112278
  • Yaosanit W, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J. Sesquiterpenes from the soil-derived fungus Trichoderma citrinoviride PSU-SPSF346. Beilstein J Org Chem. 2022;18:479–485. doi:10.3762/bjoc.18.50
  • Li F, Mo S, Yin J, et al. Structurally diverse metabolites from a soil-derived fungus Aspergillus calidoustus. Bioorg Chem. 2022;127:105988. doi:10.1016/j.bioorg.2022.105988
  • Lu XL, Liu JT, Liu XY, et al. Pimarane diterpenes from the Arctic fungus Eutypella sp. D-1. J Antibiot. 2014;67(2):171–174. doi:10.1038/ja.2013.104
  • Zhang YH, Huang SD, Pan HQ, et al. Structure determination of two new indole-diterpenoids from Penicillium sp. CM-7 by NMR spectroscopy. Magnetic Resonance Chem. 2014;52(6):306–309. doi:10.1002/mrc.4065
  • Wang X, Sun K, Wang B. Bioactive pimarane diterpenes from the Arctic fungus Eutypella sp. D-1. Chem Biodivers. 2018;15(2):e1700501. doi:10.1002/cbdv.201700501
  • Yu H, Wang X, Zhang Y, et al. Libertellenones O–S and Eutypellenones A and B, pimarane diterpene derivatives from the Arctic fungus Eutypella sp. D-1. J Nat Prod. 2018;81(7):1553–1560. doi:10.1021/acs.jnatprod.8b00039
  • Bie Q, Chen C, Yu M, et al. Dongtingnoids A-G: fusicoccane diterpenoids from a Penicillium species. J Nat Prod. 2019;82(1):80–86. doi:10.1021/acs.jnatprod.8b00694
  • Xu LL, Pang XJ, Shi Q, Xian PJ, Tao YD, Yang XL. Two new prenylated indole diterpenoids from Tolypocladium sp. and their antimicrobial activities. Chem Biodivers. 2019;16(6):e1900116.
  • Zhang Y, Li XM, Shang Z, Li CS, Ji NY, Wang BG. Meroterpenoid and diphenyl ether derivatives from Penicillium sp. MA-37, a fungus isolated from marine mangrove rhizospheric soil. J Nat Prod. 2012;75(11):1888–1895. doi:10.1021/np300377b
  • Sun J, Zhu ZX, Song YL, et al. Nitric oxide inhibitory meroterpenoids from the fungus Penicillium purpurogenum MHZ 111. J Nat Prod. 2016;79(5):1415–1422. doi:10.1021/acs.jnatprod.6b00160
  • Feng Q, Yu Y, Tang M, et al. Four new hybrid polyketide-terpenoid metabolites from the Penicillium sp. SYPF7381 in the rhizosphere soil of Pulsatilla chinensis. Fitoterapia. 2018;125:249–257. doi:10.1016/j.fitote.2018.01.010
  • Shaaban M, El-Metwally MM, Abdel-Razek AA, Laatsch H, Terretonin M. A new meroterpenoid from the thermophilic Aspergillus terreus TM8 and revision of the absolute configuration of penisimplicins. Nat Prod Res. 2018;32(20):2437–2446. doi:10.1080/14786419.2017.1419230
  • Liu M, Zhang X, Shen L, et al. Bioactive polyketide-terpenoid hybrids from a soil-derived fungus Bipolaris zeicola. J Org Chem. 2020;1:54.
  • Wu P, Xue J, Yao L, Xu L, Li H, Wei X. Bisacremines E-G, three polycyclic dimeric acremines produced by Acremonium persicinum SC0105. Org Lett. 2015;17(19):4922–4925. doi:10.1021/acs.orglett.5b02536
  • Mo S, Yin J, Ye Z, et al. Asperanstinoids A-E: undescribed 3,5-dimethylorsellinic acid-based meroterpenoids from Aspergillus calidoustus. Phytochemistry. 2021;190:112892. doi:10.1016/j.phytochem.2021.112892
  • Liu M, Gu L, Shen L, et al. Bipolaquinones A-J, Immunosuppressive Meroterpenoids from a Soil-Derived. Bipolaris zeicola J Nat Prod. 2021;84(9):2427–2436. doi:10.1021/acs.jnatprod.1c00327
  • Liu M, Zhang X, Shen L, et al. Meroterpenoids with Potent Immunosuppressive Activity from Fungus Bipolaris zeicola. Chin Chem. 2021;39(9):7.
  • Xiao N, Xu Y, Zhang X, et al. Anti-Diabetic Indole-Terpenoids From Penicillium sp. HFF16 Isolated From the Rhizosphere Soil of Cynanchum bungei Decne. Front Chem. 2022;9:792810. doi:10.3389/fchem.2021.792810
  • Liu LF, Zhang H, Qi H, Wang XM, Wang JD, Tan GS. A new androstanoid metabolite from a soil fungus Curvularia borreriae strain HS-FG-237. Nat Prod Res. 2017;31(9):1080–1084. doi:10.1080/14786419.2016.1272115
  • Guo W, Liu W, Xiao F, et al. New cytotoxic steroid produced by the soil-derived fungus Aspergillus flavus JDW-1. Nat Prod Commun. 2019;14(5):1–9. doi:10.1177/1934578X19850376
  • Wang CC, Liu HZ, Liu M, Zhang YY, Li TT, Lin XK. Cytotoxic metabolites from the soil-derived fungus Exophiala pisciphila. Molecules. 2011;16(4):2796–2801. doi:10.3390/molecules16042796
  • Zhang H, Mao LL, Qian PT, Shan WG, Wang JD, Bai H. Two new metabolites from a soil fungus Curvularia affinis strain HS-FG-196. J Asian Nat Prod Res. 2012;14(11):1078–1083. doi:10.1080/10286020.2012.713351
  • Leon F, Gao J, Dale OR, et al. Secondary metabolites from Eupenicillium parvum and their in vitro binding affinity for human opioid and cannabinoid receptors. Planta Med. 2013;79(18):1756–1761. doi:10.1055/s-0033-1351099
  • Rukachaisirikul V, Satpradit S, Klaiklay S, Phongpaichit S, Borwornwiriyapan K, Sakayaroj J. Polyketide anthraquinone, diphenyl ether, and xanthone derivatives from the soil fungus Penicillium sp. PSU-RSPG99. Tetrahedron. 2014;70(34):5148–5152. doi:10.1016/j.tet.2014.05.105
  • Sandjo LP, Thines E, Opatz T, Schuffler A. Tanzawaic acids I-L: four new polyketides from Penicillium sp. IBWF104-06. Beilstein J Org Chem. 2014;10:251–258. doi:10.3762/bjoc.10.20
  • Cai S, King JB, Du L, Powell DR, Cichewicz RH. Bioactive sulfur-containing sulochrin dimers and other metabolites from an Alternaria sp. isolate from a Hawaiian soil sample. J Nat Prod. 2014;77(10):2280–2287. doi:10.1021/np5005449
  • Liu Y, Li X, Meng L, Wang B. Polyketides from the marine mangrove-derived fungus Aspergillus ochraceus MA-15 and their activity against aquatic pathogenic bacteria. Phytochem Lett. 2015;12:232–236. doi:10.1016/j.phytol.2015.04.009
  • Liu D, Yan L, Ma L, et al. Diphenyl derivatives from coastal saline soil fungus Aspergillus iizukae. Arch Pharm Res. 2015;38(6):1038–1043. doi:10.1007/s12272-014-0371-z
  • Ma LY, Liu DS, Li DG, et al. Pyran rings containing polyketides from Penicillium raistrickii. Mar Drugs. 2016;15(1):2. doi:10.3390/md15010002
  • Chen M, Zheng YY, Chen ZQ, et al. NaBr-induced production of brominated azaphilones and related tricyclic polyketides by the marine-derived fungus Penicillium janthinellum HK1-6. J Nat Prod. 2019;82(2):368–374. doi:10.1021/acs.jnatprod.8b00930
  • Zang Y, Genta-Jouve G, Retailleau P, et al. Talaroketals A and B, unusual bis(oxaphenalenone) spiro and fused ketals from the soil fungus Talaromyces stipitatus ATCC 10500. Org Biomol Chem. 2016;14(9):2691–2697. doi:10.1039/C5OB02657A
  • Chaiyosang B, Kanokmedhakul K, Sanmanoch W, et al. Bioactive oxaphenalenone dimers from the fungus Talaromyces macrosporus KKU-1NK8. Fitoterapia. 2019;134:429–434. doi:10.1016/j.fitote.2019.03.015
  • Dramae A, Intaraudom C, Bunbamrung N, Saortep W, Srichomthong K, Pittayakhajonwut P. Heptacyclic oligophenalenones from the soil fungus Talaromyces bacillisporus BCC17645. Tetrahedron. 2020;76(9):130980. doi:10.1016/j.tet.2020.130980
  • Zang Y, Genta-Jouve G, Escargueil AE, et al. Antimicrobial oligophenalenone dimers from the soil fungus Talaromyces stipitatus. J Nat Prod. 2016;79(12):2991–2996. doi:10.1021/acs.jnatprod.6b00458
  • Yang B, Tao H, Qin XC, et al. Aspergone, a new chromanone derivative from fungus Aspergillus sp. SCSIO41002 derived of mangrove soil sample. J Antibiotics. 2017;70(6):788–790. doi:10.1038/ja.2016.169
  • Kaur H, Onsare JG, Sharma V, Arora DS. Isolation, purification and characterization of novel antimicrobial compound 7-methoxy-2,2-dimethyl-4-octa-4’,6’-dienyl-2H-napthalene-1-one from Penicillium sp. and its cytotoxicity studies. AMB Express. 2015;5(1):1–13. doi:10.1186/s13568-015-0120-9
  • Wang Q, Yang YB, Yang XQ, et al. Lovastatin analogues and other metabolites from soil-derived Aspergillus terreus YIM PH30711. Phytochemistry. 2018;145(2018):146–152. doi:10.1016/j.phytochem.2017.11.006
  • Trisuwan K, Rukachaisirikul V, Borwornwiriyapan K, Phongpaichit S, Sakayaroj J. Benzopyranone, benzophenone, and xanthone derivatives from the soil fungus Penicillium citrinum PSU-RSPG95. Tetrahedron Lett. 2014;55(7):1336–1338. doi:10.1016/j.tetlet.2014.01.017
  • Kaur H, Arora DS, Sharma V. Isolation, purification, and characterization of antimicrobial compound 6-[1,2-dimethyl-6-(2-methyl-allyloxy)-hexyl]-3-(2-methoxy-phenyl)-chromen-4-one from Penicillium sp. HT-28. Appl Biochem Biotechnol. 2014;173(8):1963–1976. doi:10.1007/s12010-014-0979-y
  • Xu Y, Tian S, Yu H, Yang W, Zhu H. Two new compounds isolated from Aspergillus aculeatus. Chem J Chin Universities. 2015;36(6):1107–1111.
  • Daengrot C, Rukachaisirikul V, Tadpetch K, et al. Penicillanthone and penicillidic acids A–C from the soil-derived fungus Penicillium aculeatum PSU-RSPG105. RSC Adv. 2016;6(46):39700–39709. doi:10.1039/C6RA04401H
  • Rajachan OA, Kanokmedhakul K, Soytong K, Kanokmedhakul S. Mycotoxins from the fungus Botryotrichum piluliferum. J Agric Food Chem. 2017;65(7):1337–1341. doi:10.1021/acs.jafc.6b05522
  • Tao H, Wei X, Lin X, Zhou X, Dong J, Yang B. Penixanthones A and B, two new xanthone derivatives from fungus Penicillium sp. SYFz-1 derived of mangrove soil sample. Nat Prod Res. 2017;31(19):2218–2222. doi:10.1080/14786419.2017.1297442
  • Kang HH, Zhang HB, Zhong MJ, et al. Potential antiviral xanthones from a coastal saline soil fungus Aspergillus iizukae. Mar Drugs. 2018;16(11):449. doi:10.3390/md16110449
  • Maha A, Phainuphong P, Rukachaisirikul V, et al. Blennolide derivatives from the soil-derived fungus Trichoderma asperellum PSU-PSF14. Tetrahedron. 2018;74(39):5659–5664. doi:10.1016/j.tet.2018.07.041
  • Form IC, Bonus M, Gohlke H, Lin W, Daletos G, Proksch P. Xanthone, benzophenone and bianthrone derivatives from the hypersaline lake-derived fungus Aspergillus wentii. Bioorg Med Chem. 2019;27(20):115005. doi:10.1016/j.bmc.2019.07.021
  • Trisuwan K, Rukachaisirikul V, Borwornwiriyapan K, Phongpaichit S, Sakayaroj J. Pyrone derivatives from the soil fungus Fusarium solani PSU-RSPG37. Phytochem Lett. 2013;6(3):495–497. doi:10.1016/j.phytol.2013.06.008
  • Zhu H, Li D, Yan Q, et al. a-Pyrones, secondary metabolites from fungus Cephalotrichum microsporum and their bioactivities. Bioorg Chem. 2019;83:129–134. doi:10.1016/j.bioorg.2018.10.022
  • Zheng YY, Liang ZY, Shen NX, et al. New naphtho-g-pyrones isolated from marine-derived fungus Penicillium sp. HK1-22 and their antimicrobial activities. Mar Drugs. 2019;17(6):322. doi:10.3390/md17060322
  • Furukawa T, Fukuda T, Nagai K, Uchida R, Tomoda H. Helvafuranone produced by the fungus Aspergillus nidulans BF0142 isolated from hot spring-derived soil. Nat Prod Commun. 2016;11(7):1001–1003. doi:10.1177/1934578X1601100733
  • Meng LH, Mandi A, Li XM, Liu Y, Kurtan T, Wang BG. Isolation, stereochemical study, and antioxidant activity of benzofuranone derivatives from a mangrove-derived fungus Eurotium rubrum MA-150. Chirality. 2016;28(8):581–584. doi:10.1002/chir.22613
  • Phainuphong P, Rukachaisirikul V, Tadpetch K, et al. g-Butenolide and furanone derivatives from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. Phytochemistry. 2017;137:165–173. doi:10.1016/j.phytochem.2017.02.008
  • An Y, Zhu H, Deng S, et al. α-Furanones, secondary metabolites from the fungus Cephalotrichum microsporum and their antibacterial activities. Phytochem Lett. 2019;30:58–61. doi:10.1016/j.phytol.2019.01.015
  • Kim J, Son S, Kim G, et al. Aromatic butenolides produced by a soil ascomycete Auxarthron sp. KCB15F070 derived from a volcanic island. Tetrahedron Lett. 2019;60(45):151227. doi:10.1016/j.tetlet.2019.151227
  • Chang JL, Xu HZ, Zhou J, et al. Antimicrobial furancarboxylic acids from a Penicillium sp. J Nat Prod. 2020;83(12):3606–3613. doi:10.1021/acs.jnatprod.0c00758
  • Ngwoke KG, El-Kashef DH, Daletos G, et al. R-Hexitronic acid, a new tetronic acid derivative isolated from a soil fungus FG9RK. Nat Prod Res. 2020;2:1–6.
  • Zhao C, Fu P, Zhang Y, Liu X, Ren F, Che Y. Sporulosol, a new ketal from the fungus Paraconiothyrium sporulosum. Molecules. 2018;23(6):1263. doi:10.3390/molecules23061263
  • Sun TY, Kuang RQ, Chen GD, et al. Three pairs of new isopentenyl dibenzo[b, e]oxepinone enantiomers from Talaromyces flavus, a wetland soil-derived fungus. Molecules. 2016;21(9):1184. doi:10.3390/molecules21091184
  • Phainuphong P, Rukachaisirikul V, Phongpaichit S, Preedanon S, Sakayaroj J. Diphenyl ethers and indanones from the soil-derived fungus Aspergillus unguis PSU-RSPG204. Tetrahedron. 2017;73(40):5920–5925. doi:10.1016/j.tet.2017.08.039
  • Ma LY, Zhang HB, Kang HH, et al. New butenolides and cyclopentenones from saline soil-derived fungus Aspergillus Sclerotiorum. Molecules. 2019;24(14):2642. doi:10.3390/molecules24142642
  • Yu HB, Jiao H, Zhu YP, Zhang JP, Lu XL, Liu XY. Bioactive metabolites from the Arctic fungus Nectria sp. B-13. J Asian Nat Prod Res. 2019;21(10):961–969. doi:10.1080/10286020.2018.1482880
  • Choochuay J, Xu X, Rukachaisirikul V, et al. Curvularin derivatives from the soil-derived fungus Aspergillus polyporicola PSU-RSPG187. Phytochem Lett. 2017;22:122–127. doi:10.1016/j.phytol.2017.09.011
  • Zhai MM, Qi FM, Li J, et al. Isolation of secondary metabolites from the soil-derived fungus Clonostachys rosea YRS-06, a biological control agent, and evaluation of antibacterial activity. J Agric Food Chem. 2016;64(11):2298–2306. doi:10.1021/acs.jafc.6b00556
  • Xu GB, Yang T, Bao JK, Fang DM, Li GY. Isochaetomium A2, a new bis(naphthodihydropyran-4-one) with antimicrobial and immunological activities from fungus Chaetomium microcephalum. Arch Pharm Res. 2014;37(5):575–579. doi:10.1007/s12272-013-0206-3
  • Chen M, Shen NX, Chen ZQ, Zhang FM, Chen Y, Penicilones A-D. Anti-MRSA azaphilones from the marine-derived fungus Penicillium janthinellum HK1-6. J Nat Prod. 2017;80(4):1081–1086. doi:10.1021/acs.jnatprod.6b01179
  • Ren J, Ding SS, Zhu A, Cao F, Zhu HJ. Bioactive azaphilone derivatives from the fungus Talaromyces aculeatus. J Nat Prod. 2017;80(8):2199–2203. doi:10.1021/acs.jnatprod.7b00032
  • Pang YW, Zhang LJ, Fang JS, et al. Two new antitumor constituents from a soil fungus Curvularia inaequalis (strain HS-FG-257). J Antibiot. 2013;66(5):287–289. doi:10.1038/ja.2012.128
  • Liu YP, Chen G, Wang HF, Zhang XL, Pei YH. Two new compounds from the fungus Penicillium crustosum YN-HT-15. J Asian Nat Prod Res. 2014;16(3):281–284. doi:10.1080/10286020.2013.867851
  • He J, Xu H, Yang L, et al. New isocoumarins and related metabolites from Talaromyces flavus. Nat Prod Commun. 2016;11(6):805–808. doi:10.1177/1934578X1601100627
  • Zhang TY, Wu YY, Zhang MY, et al. New antimicrobial compounds produced by Seltsamia galinsogisoli sp. nov., isolated from Galinsoga parviflora as potential inhibitors of FtsZ. Sci Rep. 2019;9(1):8319. doi:10.1038/s41598-019-44810-2
  • Orfali R, Perveen S. Secondary metabolites from the Aspergillus sp. in the rhizosphere soil of Phoenix dactylifera (Palm tree). BMC Chem. 2019;13(1):103. doi:10.1186/s13065-019-0624-5
  • Xu Y, Liu W, Wu D, et al. Sulfur-Containing Phenolic Compounds from the Cave Soil-Derived Aspergillus fumigatus GZWMJZ-152. J Nat Prod. 2022;85(2):433–440. doi:10.1021/acs.jnatprod.1c01158
  • Niu S, Liu D, Proksch P, Shao Z, Lin W. New polyphenols from a deep sea Spiromastix sp. fungus, and their antibacterial activities. Mar Drugs. 2015;13(4):2526–2540. doi:10.3390/md13042526
  • Liu L, Tang MX, Sang XN, et al. Three new tetralol analogs from soil-derived fungus Myrothecium verrucaria with anti-inflammatory activity. J Asian Nat Prod Res. 2019;21(1):33–42. doi:10.1080/10286020.2018.1439934
  • He JW, Qin DP, Gao H, et al. Two new coumarins from Talaromyces flavus. Molecules. 2014;19(12):20880–20887. doi:10.3390/molecules191220880
  • Tian JF, Li PJ, Li XX, et al. New antibacterial isocoumarin glycosides from a wetland soil derived fungal strain Metarhizium anisopliae. Bioorg Med Chem Lett. 2016;26(5):1391–1396. doi:10.1016/j.bmcl.2016.01.074
  • Zheng W, Ji YB, Li WL, et al. A pair of new isocoumarin epimers from soil fungus Hypoxylon sp. J Asian Nat Prod Res. 2017;19(10):993–999. doi:10.1080/10286020.2017.1347159
  • Almeida C, Perez-Victoria I, Gonzalez-Menendez V, et al. Non-geminal aliphatic dihalogenation pattern in dichlorinated diaporthins from Hamigera fusca NRRL 35721. J Nat Prod. 2018;81(6):1488–1492. doi:10.1021/acs.jnatprod.8b00041
  • Gohil AR, Deshmukh SK, Bhattacharya V, Lavhale R, Verekar S, Kate AS. Exophiarin, an isocoumarin from the fungus Exophiala sp. with antihyperglycemic activity. Nat Prod Res. 2019;2:1–9.
  • Ranji P, Wijeyaratne S, Jayawardana K, Gunaherath G. Citriquinones A and B, new benzoquinones from Penicillium citrinum. Nat Prod Commun. 2013;8(10):1431–1434. doi:10.1177/1934578X1300801024
  • Tansakul C, Rukachaisirikul V, Maha A, et al. A new phenalenone derivative from the soil fungus Penicillium herquei PSU-RSPG93. Nat Prod Res. 2014;28(20):1718–1724. doi:10.1080/14786419.2014.941363
  • Tadpetch K, Chukong C, Jeanmard L, et al. Cytotoxic naphthoquinone and a new succinate ester from the soil fungus Fusarium solani PSU-RSPG227. Phytochem Lett. 2015;11:106–110. doi:10.1016/j.phytol.2014.11.018
  • Azerang P, Khalaj V, Kobarfard F, Owlia P, Sardari S, Shahidi S. Molecular characterization of a fungus producing membrane active metabolite and analysis of the produced secondary metabolite. Iran Biomed J. 2019;23(2):121–128. doi:10.29252/ibj.23.2.121
  • Yu JS, Li C, Kwon M, et al. Herqueilenone A, a unique rearranged benzoquinone-chromanone from the Hawaiian volcanic soil-associated fungal strain Penicillium herquei FT729. Bioorg Chem. 2020;105(2):104397. doi:10.1016/j.bioorg.2020.104397
  • Yu JS, Jeong SY, Li C, et al. New phenalenone derivatives from the Hawaiian volcanic soil-associated fungus Penicillium herquei FT729 and their inhibitory effects on indoleamine 2,3-dioxygenase 1 (IDO1). Arch Pharm Res. 2022;45(2):105–113. doi:10.1007/s12272-022-01372-8
  • He J, Mu Z, Gao H, et al. New polyesters from Talaromyces flavus. Tetrahedron. 2014;70(29):4425–4430. doi:10.1016/j.tet.2014.02.060
  • Gao H, Guo W, Wang Q, et al. Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg Med Chem Lett. 2013;23(6):1776–1778. doi:10.1016/j.bmcl.2013.01.051
  • Klaiklay S, Rukachaisirikul V, Aungphao W, Phongpaichit S, Sakayaroj J. Depsidone and phthalide derivatives from the soil-derived fungus Aspergillus unguis PSU-RSPG199. Tetrahedron Lett. 2016;57(39):4348–4351. doi:10.1016/j.tetlet.2016.08.040
  • An YN, Zhang X, Zhang TY, et al. Penicimenolides A-F, resorcylic acid lactones from Penicillium sp., isolated from the rhizosphere soil of Panax notoginseng. Sci Rep. 2016;6:27396. doi:10.1038/srep27396
  • Zhou Y, Zhang YX, Zhang JP, et al. A new sesquiterpene lactone from fungus Eutypella sp. D-1. Nat Prod Res. 2017;31(14):1676–1681. doi:10.1080/14786419.2017.1286486
  • Miyano R, Matsuo H, Nonaka K, et al. Pochoniolides A and B, new antioxidants from the fungal strain Pochonia chlamydosporia var. spinulospora FKI-7537. J Biosci Bioeng. 2018;126(5):661–666. doi:10.1016/j.jbiosc.2018.05.003
  • Arunpanichlert J, Rukachaisirikul V, Chaiwarin T, et al. Dimeric g-lactone derivatives from the soil-derived fungus Lasiodiplodia theobromae NSTRU-PN1.4. Nat Prod Res. 2020;6:1–11.
  • Yang XY, Zhang JX, Ding QY, et al. Metabolites from two dominant thermophilic fungal species Thermomyces lanuginosus and Scytalidium thermophilum. Chem Biodivers. 2020;17:5.
  • Koyama N, Otoguro Y, Ohte S, Katagiri T, Tomoda H. Penicillic Acid Congener, a new inhibitor of BMP- induced alkaline phosphatase activity in myoblasts, produced by the fungus Penicillium sp. BF-0343. Nat Prod Commun. 2020;15(9):1–5. doi:10.1177/1934578X20942653
  • Zhou J, Gao Y, Chang JL, et al. Resorcylic acid lactones from an Ilyonectria sp. J Nat Prod. 2020;83(5):1505–1514. doi:10.1021/acs.jnatprod.9b01167
  • Cai S, Sun S, Zhou H, et al. Prenylated polyhydroxy-p-terphenyls from Aspergillus taichungensis ZHN-7-07. J Nat Prod. 2011;74(5):1106–1110. doi:10.1021/np2000478
  • Pang YW, Wang J, Xiang W, Liu Q, Wang X. A new benzoic acid derivative from a soil fungus Curvularia inaequalis strain HS-FG-257. Nat Product Res Dev. 2012;24(10):1331–1334.
  • Akone S, Rahn S, Henrich B, et al. 2-Pentenedioic acid derivatives from a soil-derived fungus Gongronella butleri. Phytochem Lett. 2014;10:184–188. doi:10.1016/j.phytol.2014.09.001
  • Liu WZ, Ma LY, Liu DS, et al. Peniciketals A-C, new spiroketals from saline soil derived Penicillium raistrichii. Org Lett. 2014;16(1):90–93. doi:10.1021/ol403076s
  • Masaphy S. A novel echinocandin MIG0310 with anticandida activity from newly isolated Fusarium sp. strain MS-R1. J Appl Microbiol. 2014;116(6):1458–1464. doi:10.1111/jam.12493
  • Hammerschmidt L, Aly AH, Abdel-Aziz M, et al. Cytotoxic acyl amides from the soil fungus Gymnascella dankaliensis. Bioorg. Med Chem. 2015;23(4):712–719. doi:10.1016/j.bmc.2014.12.068
  • Ahmad B, Rizwan M, Rauf A, et al. Isolation and structure elucidation, molecular docking studies of screlotiumol from soil borne fungi Sclerotium rolfsii and their reversal of multidrug resistance in mouse lymphoma cells. Asian Pacific J Cancer Prevention. 2016;17(4):2083–2087. doi:10.7314/APJCP.2016.17.4.2083
  • Fu Y, Wu P, Xue J, Wei X, Li H. Versicorin, a new lovastatin analogue from the fungus Aspergillus versicolor SC0156. Nat Prod Res. 2015;29(14):1363–1368.
  • Phainuphong P, Rukachaisirikul V, Saithong S, et al. Lovastatin analogues from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178. J Nat Prod. 2016;79(6):1500–1507. doi:10.1021/acs.jnatprod.5b00961
  • Wang Q, Yang X, Miao C, et al. A new pair of pentaketide diastereoisomers from Aspergillus melleus YIM PHI001. Records Natural Products. 2018;12(3):216–221. doi:10.25135/rnp.12.17.04.065
  • Liu F, Chen G, Zhang LH, et al. Isolation and structure elucidation of a new compound from the fungus Aspergillus flavipes PJ03-11. Nat Prod Res. 2018;32(1):30–35.
  • Liang ZY, Shen NX, Zheng YY, et al. Two new unsaturated fatty acids from the mangrove rhizosphere soil-derived fungus Penicillium javanicum HK1-22. Bioorg Chem. 2019;93:103331. doi:10.1016/j.bioorg.2019.103331
  • Ding T, Zhou Y, Qin JJ, Yang LJ, Zhang WD, Shen YH. Chemical constituents from wetland soil fungus Penicillium oxalicum GY1. Fitoterapia. 2020;142:104530. doi:10.1016/j.fitote.2020.104530
  • Fan B, Dewapriya P, Li F, et al. Pyrenosetin D, a new pentacyclic decalinoyltetramic acid derivative from the algicolous fungus Pyrenochaetopsis sp. FVE-087. Mar Drugs. 2020;18(6):281. doi:10.3390/md18060281
  • Pan X, Liu D, Wang J, et al. Peneciraistin C induces caspase-independent autophagic cell death through mitochondrial-derived reactive oxygen species production in lung cancer cells. Cancer Sci. 2013;104(11):1476–1482. doi:10.1111/cas.12253
  • Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol. 2016;43(2–3):155–176. doi:10.1007/s10295-015-1723-5
  • Capon RJ. Extracting value: mechanistic insights into the formation of natural product artifacts - case studies in marine natural products. Nat Prod Rep. 2020;37(1):55–79. doi:10.1039/C9NP00013E
  • Okoro CK, Brown R, Jones AL, et al. Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie Van Leeuwenhoek. 2009;95(2):121–133. doi:10.1007/s10482-008-9295-2