201
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Design, Synthesis and Pharmacological Evaluation of 2-(3-BenzoyI-4-Hydroxy-1,1-Dioxido-2H-Benzo[e][1,2]thiazin-2-yI)-N-(2-Bromophenyl) Acetamide as Antidiabetic Agent

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 4043-4060 | Received 20 Jul 2022, Accepted 02 Nov 2022, Published online: 05 Dec 2023

References

  • American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62–9. doi:10.2337/dc10-S062
  • Deshpande AD, Harris-Hayes M. Schootman M %J P therapy. Epidemiol Diabetes Diabetes-Related Compl. 2008;88(11):1254–1264.
  • Wang Y, Yang Z, Wei X. Sugar compositions, α-glucosidase inhibitory and amylase inhibitory activities of polysaccharides from leaves and flowers of Camellia sinensis obtained by different extraction methods. Int J Biol Macromol. 2010;47(4):534–539. doi:10.1016/j.ijbiomac.2010.07.007
  • Lim EL, Hollingsworth KG, Aribisala BS, Chen MJ, Mathers JC, Taylor R. Reversal of type 2 diabetes: normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetologia. 2011;54(10):2506–2514. doi:10.1007/s00125-011-2204-7
  • Benhalima K. Contents/contributors/preface. In: Cardiovascular Diabetology: Clinical, Metabolic and Inflammatory Facets. Basel: KARGER; 2008:I–XIV. doi:10.1159/000115119
  • Sharifi-Rad M, Anil Kumar NV, Zucca P, et al. Lifestyle, oxidative stress, and antioxidants: back and forth in the pathophysiology of chronic diseases. Front Physiol. 2020;11. doi:10.3389/fphys.2020.00694
  • Cai L, Kang YJ. Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol. 2001;1(3):181–194. doi:10.1385/CT:1:3:
  • Wang Y, Cai L. Diabetes/obesity-related inflammation, cardiac cell death and cardiomyopathy. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2006;31(6):814–818.
  • Peng X, Zhang G, Liao Y, Gong D. Inhibitory kinetics and mechanism of kaempferol on α-glucosidase. Food Chem. 2016;190:207–215. doi:10.1016/j.foodchem.2015.05.088
  • Xiao F, Zhou Y, Zhang M, et al. Hyperglycemia and blood glucose deterioration are risk factors for severe COVID‐19 with diabetes: a two‐center cohort study. J Med Virol. 2022;94(5):1967–1975. doi:10.1002/jmv.27556
  • Phan MAT, Wang J, Tang J, Lee YZ, Ng K. Evaluation of α-glucosidase inhibition potential of some flavonoids from Epimedium brevicornum. LWT Food Sci Technol. 2013;53(2):492–498. doi:10.1016/j.lwt.2013.04.002
  • Lordan S, Smyth TJ, Soler-Vila A, Stanton C, Ross RP. The α-amylase and α-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem. 2013;141(3):2170–2176. doi:10.1016/j.foodchem.2013.04.123
  • Bischoff H. The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clin Invest Med. 1995;18(4):303–311.
  • Feng J, Yang X-W, Wang R-F. Bio-assay guided isolation and identification of α-glucosidase inhibitors from the leaves of Aquilaria sinensis. Phytochemistry. 2011;72(2–3):242–247. doi:10.1016/j.phytochem.2010.11.025
  • Dhameja M, Gupta P. Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: an overview. Eur J Med Chem. 2019;176:343–377. doi:10.1016/j.ejmech.2019.04.025
  • Badshah S, Naeem A. Bioactive thiazine and benzothiazine derivatives: green synthesis methods and their medicinal importance. Molecules. 2016;21(8):1054. doi:10.3390/molecules21081054
  • Huneif MA, Alshehri DB, Alshaibari KS, et al. Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomed Pharmacother. 2022;150:113038. doi:10.1016/j.biopha.2022.113038
  • Noori M, Davoodi A, Iraji A, et al. Design, synthesis, and in silico studies of quinoline-based-benzo[d]imidazole bearing different acetamide derivatives as potent α-glucosidase inhibitors. Sci Rep. 2022;12(1):14019. doi:10.1038/s41598-022-18455-7
  • Ikeda T, Kakegawa H, Miyataka H, Matsumoto H, Satoh T. Anti-allergic and anti-inflammatory actions of 2′-(tetrazole-5-yl)-4-hydroxy-2-methyl-2H-1,2-benzothiazine-3-carboxanilide 1,1-dioxide. Bioorg Med Chem Lett. 1992;2(7):709–714. doi:10.1016/S0960-894X(00)80397-2
  • Lombardino JG, Wiseman EH, Chiaini J. Potent antiinflammatory N-heterocyclic 3-carboxamides of 4-hydroxy-2-methyl-2H-1,2-benzothiazine 1,1-dioxide. J Med Chem. 1973;16(5):493–496. doi:10.1021/jm00263a017
  • Lombardino JG, Wiseman EH, McLamore WM. Synthesis and antiinflammatory activity of some 3-carboxamides of 2-alkyl-4-hydroxy-2H-1,2-benzothiazine 1,1-dioxide. J Med Chem. 1971;14(12):1171–1175. doi:10.1021/jm00294a008
  • Jantová S, Greif G, Špirková K, Stankovský Š, Oravcová M. Antibacterial effects of trisubstituted quinazoline derivatives. Folia Microbiol. 2000;45(2):133–137. doi:10.1007/BF02817411
  • Saddique FA, Zaib S, Jalil S, et al. Synthesis, monoamine oxidase inhibition activity and molecular docking studies of novel 4-hydroxy-N′-[benzylidene or 1-phenylethylidene]-2-H/methyl/benzyl-1,2-benzothiazine-3-carbohydrazide 1,1-dioxides. Eur J Med Chem. 2018;143:1373–1386. doi:10.1016/j.ejmech.2017.10.036
  • Berryman KA, Edmunds JJ, Bunker AM, et al. Endothelin receptor antagonists: synthesis and structure–activity relationships of substituted benzothiazine-1,1-dioxides. Bioorg Med Chem. 1998;6(9):1447–1456. doi:10.1016/S0968-0896(98)00080-7
  • Saddique FA, Aslam S, Ahmad M, et al. Synthesis and α-glucosidase inhibition activity of 2-[3-(Benzoyl/4-bromobenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl]-N-arylacetamides: an in silico and biochemical approach. Molecules. 2021;26(10):3043. doi:10.3390/molecules26103043
  • Inagaki M, Tsuri T, Jyoyama H, et al. Novel antiarthritic agents with 1,2-Isothiazolidine-1,1-dioxide (γ-Sultam) skeleton: cytokine suppressive dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase. J Med Chem. 2000;43(10):2040–2048. doi:10.1021/jm9906015
  • Lebegue N, Gallet S, Flouquet N, et al. Novel Benzopyridothiadiazepines as Potential Active Antitumor Agents. J Med Chem. 2005;48(23):7363–7373. doi:10.1021/jm0503897
  • Shobana S, Sreerama YN, Malleshi NG. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: mode of inhibition of α-glucosidase and pancreatic amylase. Food Chem. 2009;115(4):1268–1273. doi:10.1016/j.foodchem.2009.01.042
  • Gulati V, Harding IH, Palombo EA. Enzyme inhibitory and antioxidant activities of traditional medicinal plants: potential application in the management of hyperglycemia. BMC Complement Altern Med. 2012;12(1):77. doi:10.1186/1472-6882-12-77
  • Saddique FA, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, Zaki MEA. Identification of cyclic sulfonamides with an N-arylacetamide group as α-glucosidase and α-amylase inhibitors: biological evaluation and molecular modeling. Pharmaceuticals. 2022;15(1):106. doi:10.3390/ph15010106
  • Taidi L, Maurady A, Britel MR. Molecular docking study and molecular dynamic simulation of human cyclooxygenase-2 (COX-2) with selected eutypoids. J Biomol Struct Dyn. 2022;40(3):1189–1204. doi:10.1080/07391102.2020.1823884
  • Taj S, Ahmad M, Alshammari A, Alghamdi A, Ali Ashfaq U. Exploring the therapeutic potential of benzothiazine-pyrazole hybrid molecules against alpha-glucosidase: pharmacological and molecular modelling based approach. Saudi J Biol Sci. 2022;29(3):1416–1421. doi:10.1016/j.sjbs.2021.11.033
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25. doi:10.1016/S0169-409X(96)00423-1
  • Coimbra JRM, Baptista SJ, Dinis TCP, et al. Combining virtual screening protocol and in vitro evaluation towards the discovery of BACE1 inhibitors. Biomolecules. 2020;10(4):535.
  • Daub CD, Mabate B, Malgas S, Pletschke BI. Fucoidan from Ecklonia maxima is a powerful inhibitor of the diabetes-related enzyme, α-glucosidase. Int J Biol Macromol. 2020;151:412–420. doi:10.1016/j.ijbiomac.2020.02.161
  • Okawa M, Kinjo J, Nohara T, Ono M. DPPH (1,1-Diphenyl-2-Picrylhydrazyl) radical scavenging activity of flavonoids obtained from some medicinal plants. Biol Pharm Bull. 2001;24(10):1202–1205. doi:10.1248/bpb.24.1202
  • Taj S, Ahmad M, Ashfaq UA. Exploring of novel 4-hydroxy-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxide derivative as a dual inhibitor of α-glucosidase and α-amylase: molecular docking, biochemical, enzyme kinetic and in-vivo mouse model study. Int J Biol Macromol. 2022;207:507–521. doi:10.1016/j.ijbiomac.2022.03.023
  • He Z, Zhou Z-W, Yang Y, et al. Overview of clinically approved oral antidiabetic agents for the treatment of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol. 2015;42(2):125–138. doi:10.1111/1440-1681.12332
  • Taj S, Ashfaq UA, Aslam S, Ahmad M, Bhatti SH. Alpha-glucosidase activity of novel pyrazolobenzothiazine 5,5-dioxide derivatives for the treatment of diabetes mellitus. In vitro combined with molecular docking approach. Biologia. 2019;74(11):1523–1530. doi:10.2478/s11756-019-00294-z
  • Shah S, Arshia Javaid K, Javaid K, et al. Synthesis, and in vitro and in silico α-glucosidase inhibitory studies of 5-Chloro-2-Aryl Benzo[d]thiazoles. Bioorg Chem. 2018;78:269–279. doi:10.1016/j.bioorg.2018.02.013
  • Kasturi S, Surarapu S, Uppalanchi S, et al. Synthesis and α-glucosidase inhibition activity of dihydroxy pyrrolidines. Bioorg Med Chem Lett. 2017;27(12):2818–2823. doi:10.1016/j.bmcl.2017.04.078
  • Rahim F, Zaman K, Taha M, et al. Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorg Chem. 2020;94:103394. doi:10.1016/j.bioorg.2019.103394
  • Selvarasu S, Srinivasan P, Mannathusamy G, Maria Susai B. Synthesis, characterization, in silico molecular modeling, anti-diabetic and antimicrobial screening of novel 1-aryl-N-tosyl-1H-tetrazole-5-carboxamide derivatives. Chem Data Collect. 2021;32:100648. doi:10.1016/j.cdc.2021.100648
  • de Lima Júnior JP, Franco RR, Saraiva AL, Moraes IB, Espindola FS. Anacardium humile St. Hil as a novel source of antioxidant, antiglycation and α-amylase inhibitors molecules with potential for management of oxidative stress and diabetes. J Ethnopharmacol. 2021;268:113667. doi:10.1016/j.jep.2020.113667
  • Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol. 2006;212(2):167–178. doi:10.1016/j.taap.2006.01.003
  • Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009;89(1):27–71. doi:10.1152/physrev.00014.2008
  • Kangralkar VA, Patil SD, Bandivadekar RM. Oxidative stress and diabetes: a review. Int J Pharm Appl. 2010;1(1):38–45.
  • Rouzbehan S, Moein S, Homaei A, Moein MR. Kinetics of α-glucosidase inhibition by different fractions of three species of Labiatae extracts: a new diabetes treatment model. Pharm Biol. 2017;55(1):1483–1488. doi:10.1080/13880209.2017.1306569
  • Zhang H, Wang G, Beta T, Dong J. Inhibitory properties of aqueous ethanol extracts of propolis on alpha-glucosidase. Evid Based Compl Altern Med. 2015;2015:1–7. doi:10.1155/2015/587383
  • Ghadyale V, Takalikar S, Haldavnekar V, Arvindekar A. Effective control of postprandial glucose level through inhibition of intestinal alpha glucosidase by Cymbopogon martinii (Roxb.). Evid Based Compl Altern Med. 2012;2012:1–6. doi:10.1155/2012/372909
  • Hermans MP, Valensi P. Elevated triglycerides and low high-density lipoprotein cholesterol level as marker of very high risk in type 2 diabetes. Curr Opin Endocrinol Diabetes Obes. 2018;25(2):118–129. doi:10.1097/MED.0000000000000398
  • Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 2001;414(6865):821–827. doi:10.1038/414821a
  • Buse JB, Tan MH, Prince MJ, Erickson PP. The effects of oral anti-hyperglycaemic medications on serum lipid profiles in patients with type 2 diabetes. Diabetes, Obes Metab. 2004;6(2):133–156. doi:10.1111/j.1462-8902.2004.00325.x
  • Verma S, Hussain ME. Obesity and diabetes: an update. Diabetes Metab Syndr Clin Res Rev. 2017;11(1):73–79. doi:10.1016/j.dsx.2016.06.017
  • Dabla PK. Renal function in diabetic nephropathy. World J Diabetes. 2010;1(2):48. doi:10.4239/wjd.v1.i2.48
  • Bernhardt WM, Schmitt R, Rosenberger C, et al. Expression of hypoxia-inducible transcription factors in developing human and rat kidneys. Kidney Int. 2006;69(1):114–122. doi:10.1038/sj.ki.5000062
  • Li K-X, Ji M-J, Sun H-J. An updated pharmacological insight of resveratrol in the treatment of diabetic nephropathy. Gene. 2021;780:145532. doi:10.1016/j.gene.2021.145532