171
Views
0
CrossRef citations to date
0
Altmetric
ORIGINAL RESEARCH

Protective Effects of p-CA Against Acute Liver Damage Induced by LPS/D-GalN in Wistar Albino Rats

, , , , , , & show all
Pages 3327-3342 | Received 20 Jul 2022, Accepted 16 Sep 2022, Published online: 05 Dec 2023

References

  • Wei X, Yang D, Xing Z, et al. Quercetin loaded liposomes modified with galactosylated chitosan prevent LPS/D-GalN induced acute liver injury. Mater Sci Eng C. 2021;131:112527. doi:10.1016/j.msec.2021.112527
  • Huang S, Mo C, Zeng T, et al. Lupeol ameliorates LPS/D-GalN induced acute hepatic damage by suppressing inflammation and oxidative stress through TGFβ1-Nrf2 signal pathway. Aging. 2021;13(5):6592. doi:10.18632/aging.202409
  • Zhang J-K, Zhou X-L, Wang X-Q, et al. Que Zui tea ameliorates hepatic lipid accumulation and oxidative stress in high fat diet induced nonalcoholic fatty liver disease. Food Res Int. 2022;156:111196. doi:10.1016/j.foodres.2022.111196
  • Alwahsh SM, Dwyer BJ, Forbes S, Van Thiel DH, Starkey Lewis PJ, Ramadori G. Insulin production and resistance in different models of diet-induced obesity and metabolic syndrome. Int J Mol Sci. 2017;18(2):285. doi:10.3390/ijms18020285
  • Zhao C-Z, Jiang W, Zhu -Y-Y, et al. Highland barley Monascus purpureus went extract ameliorates high-fat, high-fructose, high-cholesterol diet induced nonalcoholic fatty liver disease by regulating lipid metabolism in golden hamsters. J Ethnopharmacol. 2022;286:114922. doi:10.1016/j.jep.2021.114922
  • Alwahsh SM, Xu M, Schultze FC, et al. Combination of alcohol and fructose exacerbates metabolic imbalance in terms of hepatic damage, dyslipidemia, and insulin resistance in rats. PLoS One. 2014;9(8):e104220. doi:10.1371/journal.pone.0104220
  • Li Y-H, Wu J-X, He Q, et al. Amelioration of radiation-induced liver damage by p-coumaric acid in mice. Food Sci Biotechnol. 2022;31(10):1315–1323. doi:10.1007/s10068-022-01118-8
  • Zhang P, Yin Y, Wang T, et al. Maresin 1 mitigates concanavalin A-induced acute liver injury in mice by inhibiting ROS-mediated activation of NF-κB signaling. Free Radic Biol Med. 2020;147:23–36. doi:10.1016/j.freeradbiomed.2019.11.033
  • Harn H-J, Lin S-Z, Hung S-H, et al. Adipose-derived stem cells can abrogate chemical-induced liver fibrosis and facilitate recovery of liver function. Cell Transplant. 2012;21(12):2753–2764. doi:10.3727/096368912X652959
  • Wu Z, Sun L, Chen R, et al. Chinese tea alleviates CCl4-induced liver injury through the NF-κBorNrf2Signaling pathway in C57BL-6J mice. Nutrients. 2022;14(5):972. doi:10.3390/nu14050972
  • Xu L, Yang Y, Jiang J, et al. Eosinophils protect against Acetaminophen‐induced liver injury through cyclooxygenase‐mediated IL‐4/IL‐13 production. Hepatol. 2022;2022:1–10.
  • Chai F-N, Zhang J, Xiang H-M, et al. Protective effect of Coptisine from RhizomaCoptidis on LPS/D-GalN-induced acute liver failure in mice through up-regulating expression of miR-122. Biomed Pharmacother. 2018;98:180–190. doi:10.1016/j.biopha.2017.11.133
  • Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002;71:635. doi:10.1146/annurev.biochem.71.110601.135414
  • Gong X, Yang Y, Huang L, et al. Antioxidation, anti-inflammation and anti-apoptosis by paeonol in LPS/d-GalN-induced acute liver failure in mice. Int Immunopharmacol. 2017;46:124–132. doi:10.1016/j.intimp.2017.03.003
  • Beutler B, Cerami A. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Annu Rev Biochem. 1988;57(1):505–518. doi:10.1146/annurev.bi.57.070188.002445
  • Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood. 1991;77(8):1627–1652. doi:10.1182/blood.V77.8.1627.1627
  • Medzhitov R, Janeway JC. Innate immunity. N Engl J Med. 2000;343(5):338–344. doi:10.1056/NEJM200008033430506
  • Drake T, Cheng J, Chang A, Taylor F. Expression of tissue factor, thrombomodulin, and E-selectin in baboons with lethal Escherichia coli sepsis. AmJPathol. 1993;142(5):1458.
  • Li A, Chang A, Peer GT, Hinshaw LB, Taylor FB. Comparison of the capacity of rhTNF-alpha and Escherichia coli to induce procoagulant activity by baboon mononuclear cells in vivo and in vitro. Shock. 1996;5(4):274–279. doi:10.1097/00024382-199604000-00007
  • Esmon CT. Regulation of blood coagulation. BiochimBiophysActa. 2000;1477(1–2):349–360.
  • Bernard GR, Vincent J-L, Laterre P-F, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med. 2001;344(10):699–709. doi:10.1056/NEJM200103083441001
  • Keppler D, Decker K. Studies on the mechanism of galactosamine hepatitis: accumulation of galactosamine‐1‐phosphate and its inhibition of UDP‐glucose pyrophosphorylase. Eur J Biochem. 1969;10(2):219–225. doi:10.1111/j.1432-1033.1969.tb00677.x
  • Silverstein R. D-galactosamine lethality model: scope and limitations. J Endotoxin Res. 2004;10(3):147–162. doi:10.1179/096805104225004879
  • Ferreira PS, Victorelli FD, Fonseca-Santos B, Chorilli M. A review of analytical methods for p-coumaric acid in plant-based products, beverages, and biological matrices. Crit Rev Anal Chem. 2019;49(1):21–31. doi:10.1080/10408347.2018.1459173
  • Ramorobi LM, Matowane GR, Mashele SS, et al. Bioactive synergism between zinc mineral and p‐coumaric acid: a multi‐mode glycemic control and antioxidative study. J Food Biochem;2022. e14360. doi:10.1111/jfbc.14360
  • Pei K, Ou J, Huang J, Ou S. p‐Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric. 2016;96(9):2952–2962. doi:10.1002/jsfa.7578
  • Pragasam SJ, Venkatesan V, Rasool M. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation. 2013;36(1):169–176. doi:10.1007/s10753-012-9532-8
  • Kilani-Jaziri S, Mokdad-Bzeouich I, Krifa M, Nasr N, Ghedira K, Chekir-Ghedira L. Immunomodulatory and cellular anti-oxidant activities of caffeic, ferulic, and p-coumaric phenolic acids: a structure–activity relationship study. Drug Chem Toxicol. 2017;40(4):416–424. doi:10.1080/01480545.2016.1252919
  • Chiang L, Chiang W, Chang M, Ng L, Lin C. Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral Res. 2002;55(1):53–62. doi:10.1016/S0166-3542(02)00007-4
  • Ferreira P, Victorelli F, Rodero C, et al. p-Coumaric acid loaded into liquid crystalline systems as a novel strategy to the treatment of vulvovaginal candidiasis. Int J Pharm. 2021;603:120658. doi:10.1016/j.ijpharm.2021.120658
  • Ferguson LR, Lim IF, Pearson AE, Ralph J, Harris PJ. Bacterial antimutagenesis by hydroxycinnamic acids from plant cell walls. Mutat Res Genet Toxicol Environ Mutagen. 2003;542(1–2):49–58. doi:10.1016/j.mrgentox.2003.08.005
  • Daroi PA, Dhage SN, Juvekar AR. p-Coumaric acid mitigates lipopolysaccharide induced brain damage via alleviating oxidative stress, inflammation and apoptosis. J Pharm Pharmacol. 2022;74(4):556–564.
  • Wang L, You X, Dai C, Fang Y, Wu J. Development of poly (p-coumaric acid) as a self-anticancer nanocarrier for efficient and biosafe cancer therapy. Biomater Sci. 2022;10(9):2263–2274. doi:10.1039/D2BM00027J
  • Amalan V, Vijayakumar N, Indumathi D, Ramakrishnan A. Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: in vivo approach. BiomedPharmacother. 2016;84:230–236.
  • Shen Y, Song X, Li L, et al. Protective effects of p-coumaric acid against oxidant and hyperlipidemia-an in vitro and in vivo evaluation. BiomedPharmacother. 2019;111:579–587.
  • Cha H, Lee S, Lee JH, Park J-W. Protective effects of p-coumaric acid against Acetaminophen-induced hepatotoxicity in mice. Food Chem Toxicol. 2018;121:131–139. doi:10.1016/j.fct.2018.08.060
  • Sabitha R, Nishi K, Gunasekaran VP, et al. p-Coumaric acid attenuates alcohol exposed hepatic injury through MAPKs, apoptosis and Nrf2 signaling in experimental models. Chem Biol Interact. 2020;321:109044. doi:10.1016/j.cbi.2020.109044
  • Bal SS, Leishangthem GD, Sethi RS, Singh A. P-coumaric acid ameliorates fipronil induced liver injury in mice through attenuation of structural changes, oxidative stress and inflammation. Pestic Biochem Physiol. 2022;180:104997. doi:10.1016/j.pestbp.2021.104997
  • Oktay M, Gülçin İ, Küfrevioğlu Öİ. Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts. Food Sci Tech. 2003;36(2):263–271.
  • Işıl Berker K, Güçlü K, Tor İ, Demirata B, Apak R. Total antioxidant capacity assay using optimized ferricyanide/Prussian blue method. Food Analy Method. 2010;3(3):154–168. doi:10.1007/s12161-009-9117-9
  • Yesiloglu Y, Aydin H, Kilic I. In vitro antioxidant activity of various extracts of ginger (Zingiber officinale L.) seed. Asian J Chem. 2013;25(7):3573. doi:10.14233/ajchem.2013.13657
  • Imtiaz SM, Aleem A, Saqib F, Ormenisan AN, Elena Neculau A, Anastasiu CV. The potential involvement of an ATP-dependent potassium channel-opening mechanism in the smooth muscle relaxant properties of Tamarix dioica Roxb. Biomolecules. 2019;9(11):722. doi:10.3390/biom9110722
  • Li J, Zhang X, Huang H. Protective effect of linalool against lipopolysaccharide/D-galactosamine-induced liver injury in mice. Int Immunopharmacol. 2014;23(2):523–529. doi:10.1016/j.intimp.2014.10.001
  • Mukherjee D, Khatua TN, Venkatesh P, Saha B, Mukherjee PK. Immunomodulatory potential of rhizome and seed extracts of Nelumbo nucifera Gaertn. JEthnopharmacol. 2010;128(2):490–494. doi:10.1016/j.jep.2010.01.015
  • El‐Beshbishy HA. Aqueous garlic extract attenuates hepatitis and oxidative stress induced by galactosamine/lipoploysaccharide in rats. Phytother Res. 2008;22(10):1372–1379. doi:10.1002/ptr.2505
  • Tian Q, Wang G, Zhang Y, et al. Engeletin inhibits Lipopolysaccharide/d-galactosamine-induced liver injury in mice through activating PPAR-γ. J Pharmacol Sci. 2019;140(3):218–222. doi:10.1016/j.jphs.2019.06.011
  • Lv H, Qi Z, Wang S, Feng H, Deng X, Ci X. Asiatic acid exhibits anti-inflammatory and antioxidant activities against lipopolysaccharide and d-galactosamine-induced fulminant hepatic failure. Front Immunol. 2017;8:785. doi:10.3389/fimmu.2017.00785
  • Zhong W, Qian K, Xiong J, Ma K, Wang A, Zou Y. Curcumin alleviates lipopolysaccharide induced sepsis and liver failure by suppression of oxidative stress-related inflammation via PI3K/AKT and NF-κB related signaling. Biomed Pharmacother. 2016;83:302–313. doi:10.1016/j.biopha.2016.06.036
  • Xu Z, Howard LR. Analysis of Antioxidant-Rich Phytochemicals. John Wiley & Sons; 2012.
  • Ma L, Gong X, Kuang G, Jiang R, Chen R, Wan J. Sesamin ameliorates lipopolysaccharide/d-galactosamine-induced fulminant hepatic failure by suppression of Toll-like receptor 4 signaling in mice. Biochem Biophys Res Commun. 2015;461(2):230–236. doi:10.1016/j.bbrc.2015.03.154
  • Chen W, Lin Y-J, Zhou X-Y, Chen H, Jin Y. Rosiglitazone protects rat liver against acute liver injury associated with the NF-κB signaling pathway. Can JPhysiolPharmacol. 2016;94(1):28–34.
  • Peng Z, Gong X, Yang Y, et al. Hepatoprotective effect of quercetin against LPS/d-GalN induced acute liver injury in mice by inhibiting the IKK/NF-κB and MAPK signal pathways. Int Immunopharmacol. 2017;52:281–289. doi:10.1016/j.intimp.2017.09.022
  • Kemelo M, Wojnarova L, Canová NK, Farghali H. D-galactosamine/lipopolysaccharide-induced hepatotoxicity downregulates sirtuin 1 in rat liver: role of sirtuin 1 modulation in hepatoprotection. Physiol Res. 2014;63(5):615–623. doi:10.33549/physiolres.932761
  • Wen J, Lin H, Zhao M, et al. Piceatannol attenuates D-GalN/LPS-induced hepatoxicity in mice: involvement of ER stress, inflammation and oxidative stress. Int Immunopharmacol. 2018;64:131–139. doi:10.1016/j.intimp.2018.08.037
  • Wang H, Wei X, Wei X, et al. 4-hydroxybenzo [d] oxazol-2 (3H)-one ameliorates LPS/D-GalN-induced acute liver injury by inhibiting TLR4/NF-κB and MAPK signaling pathways in mice. Int Immunopharmacol. 2020;83:106445. doi:10.1016/j.intimp.2020.106445
  • Zeashan H, Amresh G, Singh S, Rao CV. Protective effect of Amaranthus spinosus against D-galactosamine/lipopolysaccharide-induced hepatic failure. PharmBiol. 2010;48(10):1157–1163.
  • Vera‐Ramirez L, Pérez‐Lopez P, Varela‐Lopez A, Ramirez‐Tortosa M, Battino M, Quiles JL. Curcumin and liver disease. Biofactors. 2013;39(1):88–100. doi:10.1002/biof.1057
  • Bradham CA, Manns MP, Brenner DA, Trautwein CI, Trautwein C. TNF-induced liver injury. Am J Physiol Gastrointest Liver Physiol. 1998;275(3):G387–G392. doi:10.1152/ajpgi.1998.275.3.G387
  • Sethi G, Sung B, Aggarwal B. TNF: a master switch for inflammation to cancer. Front Biosci. 2008;13(13):5094–5107.
  • Ding WX, Yin XM. Dissection of the multiple mechanisms of TNF‐α‐induced apoptosis in liver injury. J Cell Mol Med. 2004;8(4):445–454.
  • Wang L, Wang X, Kong L, et al. Isoliquiritigenin alleviates LPS/D-GalN-induced acute liver failure by activating the PGC-1α/Nrf2 pathway to reduce oxidative stress and inflammatory response. Int Immunopharmacol. 2021;100:108159. doi:10.1016/j.intimp.2021.108159
  • Godarzi SM, Gorji AV, Gholizadeh B, Mard SA, Mansouri E. Antioxidant effect of p-coumaric acid on interleukin 1-β and tumor necrosis factor-α in rats with renal ischemic reperfusion. Nefrología. 2020;40(3):311–319. doi:10.1016/j.nefro.2019.10.003
  • Jaeschke H, Hasegawa T. Role of neutrophils in acute inflammatory liver injury. Liver Int. 2006;26(8):912–919. doi:10.1111/j.1478-3231.2006.01327.x
  • Xia X, Su C, Fu J, et al. Role of α-lipoic acid in LPS/d-GalN induced fulminant hepatic failure in mice: studies on oxidative stress, inflammation and apoptosis. Int Immunopharmacol. 2014;22(2):293–302. doi:10.1016/j.intimp.2014.07.008
  • Dufour DR, Lott JA, Nolte FS, Gretch DR, Koff RS, Seeff LB. Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clin Chem. 2000;46(12):2027–2049. doi:10.1093/clinchem/46.12.2027
  • Sheriff SA, Devaki T. Lycopene stabilizes lipoprotein levels during D-galactosamine/lipopolysaccharide induced hepatitis in experimental rats. Asian Pac J Trop Biomed. 2012;2(12):975–980. doi:10.1016/S2221-1691(13)60009-X
  • Black DD, Tso P, Weidman S, Sabesin SM. Intestinal lipoproteins in the rat with D-(+)-galactosamine hepatitis. J Lipid Res. 1983;24(8):977–992. doi:10.1016/S0022-2275(20)37912-8
  • Prabhakaran V, Kumar BSA, Shekar DS, Nandeesh R, Subramanyam P, Ranganayakulu D. Evaluation of the hepatoprotective activity of Portulaca oleracea L. On D-galactosmaine-induced hepatic injury in rats. BoletínLatinoamericano y del Caribe de PlantasMedicinales y Aromáticas. 2010;9(3):199–205.
  • Cartwright CK, Ragland JB, Weidman SW, Sabesin SM. Alterations in lipoprotein composition associated with galactosamine-induced rat liver injury. J Lipid Res. 1982;23(5):667–679. doi:10.1016/S0022-2275(20)38099-8
  • Nagasaki T, Schuyler AJ, Zhao J, et al. 15LO1 dictates glutathione redox changes in asthmatic airway epithelium to worsen type 2 inflammation. J Clin Invest. 2022;132(1). doi:10.1172/JCI151685
  • Gate L, Paul J, Ba GN, Tew K, Tapiero H. Oxidative stress induced in pathologies: the role of antioxidants. Biomed Pharmacother. 1999;53(4):169–180. doi:10.1016/S0753-3322(99)80086-9
  • Pizzorno J. Glutathione! Integr Med. 2014;13(1):8.
  • Valdivia A, Perez-Alvarez S, Aroca-Aguilar J, Ikuta I, Jordan J. Superoxide dismutases: a physiopharmacological update. J Physiol Biochem. 2009;65(2):195–208.