544
Views
8
CrossRef citations to date
0
Altmetric
REVIEW

Progress and Challenges of Anti-VEGF Agents and Their Sustained-Release Strategies for Retinal Angiogenesis

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 3241-3262 | Received 20 Jul 2022, Accepted 10 Sep 2022, Published online: 05 Dec 2023

References

  • Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration. Lancet. 2018;392(10153):1147–1159. doi:10.1016/s0140-6736(18)31550-2
  • Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376(9735):124–136. doi:10.1016/s0140-6736(09)62124-3
  • Tang Y, Cheng Y, Wang S, et al. Review: the development of risk factors and cytokines in retinal vein occlusion. Front Med. 2022;9:910600. doi:10.3389/fmed.2022.910600
  • Dai C, Xiao J, Wang C, et al. Neurovascular abnormalities in retinopathy of prematurity and emerging therapies. J Mol Med. 2022;100(6):817–828. doi:10.1007/s00109-022-02195-2
  • Huang YH, Kuo CH, Peng IC, et al. Recombinant thrombomodulin domain 1 rescues pathological angiogenesis by inhibition of hif-1α-VEGF pathway. Cell Mol Life Sci. 2021;78(23):7681–7692. doi:10.1007/s00018-021-03950-3
  • Uemura A, Fruttiger M, D’Amore PA, et al. Vegfr1 signaling in retinal angiogenesis and microinflammation. Prog Retin Eye Res. 2021;84:100954.
  • Huang H. Pericyte-endothelial interactions in the retinal microvasculature. Int J Mol Sci. 2020;21(19). doi:10.3390/ijms21197413
  • Huemer J, Khalid H, Wagner SK, et al. Phenotyping of retinal neovascularization in ischemic retinal vein occlusion using wide field OCT angiography. Eye. 2021;35(10):2812–2819. doi:10.1038/s41433-020-01317-9
  • Mortezaee K. Hypoxia induces core-to-edge transition of progressive tumoral cells: a critical review on differential yet corroborative roles for hif-1α and hif-2α. Life Sci. 2020;242:117145. doi:10.1016/j.lfs.2019.117145
  • Rattner A, Williams J, Nathans J. Roles of HIFs and VEGF in angiogenesis in the retina and brain. J Clin Invest. 2019;129(9):3807–3820. doi:10.1172/jci126655
  • Majidpoor J, Mortezaee K. Angiogenesis as a hallmark of solid tumors - clinical perspectives. Cell Oncol. 2021;44(4):715–737. doi:10.1007/s13402-021-00602-3
  • Campbell M, Doyle SL. Current perspectives on established and novel therapies for pathological neovascularization in retinal disease. Biochem Pharmacol. 2019;164:321–325. doi:10.1016/j.bcp.2019.04.029
  • Jiang G, Han X, Qiao K, et al. Therapeutic effect of intravitreal anti-VEGF drugs on retinal neovascularization in diabetic retinopathy. Minerva Med. 2022. doi:10.23736/s0026-4806.22.07943-5
  • Arrigo A, Aragona E, Bandello F. VEGF-targeting drugs for the treatment of retinal neovascularization in diabetic retinopathy. Ann Med. 2022;54(1):1089–1111. doi:10.1080/07853890.2022.2064541
  • Tomita Y, Lee D, Tsubota K, et al. Updates on the current treatments for diabetic retinopathy and possibility of future oral therapy. J Clin Med. 2021;10(20). doi:10.3390/jcm10204666
  • Lashay A, Riazi-Esfahani H, Mirghorbani M, et al. Intravitreal medications for retinal vein occlusion: systematic review and meta-analysis. J Ophthalmic Vis Res. 2019;14(3):336–366. doi:10.18502/jovr.v14i3.4791
  • Hayreh SS. Photocoagulation for retinal vein occlusion. Prog Retin Eye Res. 2021;85:100964. doi:10.1016/j.preteyeres.2021.100964
  • Maxwell JD, Greig WR, Boyle JA, et al. Reiter’s syndrome and psoriasis. Scott Med J. 1966;11(1):14–18. doi:10.1177/003693306601100103
  • Hitschke K, Bühler R, Apell HJ, et al. Inactivation of the Na, k-ATPase by radiation-induced free radicals. Evidence for a radical-chain mechanism. FEBS Lett. 1994;353(3):297–300. doi:10.1016/0014-5793(94)01067-6
  • Domańska-Janik K. Experimental hypoxia and some problems of oxygenic glucose metabolism in the central nervous system. Neuropatol Pol. 1972;10(1):17–43.
  • Brinkmann A, Winkelmann K, Käckenmeister T, et al. Effect of long-term anti-VEGF treatment on viability and function of rpe cells. Curr Eye Res. 2022;47(1):127–134. doi:10.1080/02713683.2021.1931344
  • Zhao HY, Wu J, Zhu JJ, et al. Research advances in tissue engineering materials for sustained release of growth factors. Biomed Res Int. 2015;2015:808202. doi:10.1155/2015/808202
  • Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–186. doi:10.1016/j.preteyeres.2015.08.001
  • Campochiaro PA, Brown DM, Pearson A, et al. Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology. 2012;119(10):2125–2132. doi:10.1016/j.ophtha.2012.04.030
  • Zhang X, Zeng H, Bao S, et al. Diabetic macular edema: new concepts in patho-physiology and treatment. Cell Biosci. 2014;4:27. doi:10.1186/2045-3701-4-27
  • Boyer DS, Yoon YH, Belfort R Jr, et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 2014;121(10):1904–1914. doi:10.1016/j.ophtha.2014.04.024
  • Hayreh SS, Zimmerman MB. Branch retinal vein occlusion: natural history of visual outcome. JAMA Ophthalmol. 2014;132(1):13–22. doi:10.1001/jamaophthalmol.2013.5515
  • Kolar P. Risk factors for central and branch retinal vein occlusion: a meta-analysis of published clinical data. J Ophthalmol. 2014;2014:724780. doi:10.1155/2014/724780
  • Yang LP, McKeage K. Intravitreal aflibercept (Eylea(®)): a review of its use in patients with macular oedema secondary to central retinal vein occlusion. Drugs Aging. 2014;31(5):395–404. doi:10.1007/s40266-014-0176-2
  • Sangroongruangsri S, Ratanapakorn T, Wu O, et al. Comparative efficacy of bevacizumab, ranibizumab, and aflibercept for treatment of macular edema secondary to retinal vein occlusion: a systematic review and network meta-analysis. Expert Rev Clin Pharmacol. 2018;11(9):903–916. doi:10.1080/17512433.2018.1507735
  • Rogers SL, McIntosh RL, Lim L, et al. Natural history of branch retinal vein occlusion: an evidence-based systematic review. Ophthalmology. 2010;117(6):1094–1101.e1095. doi:10.1016/j.ophtha.2010.01.058
  • Rhoades W, Dickson D, Nguyen QD, et al. Management of macular edema due to central retinal vein occlusion - The role of aflibercept. Taiwan J Ophthalmol. 2017;7(2):70–76. doi:10.4103/tjo.tjo_9_17
  • Rein DB, Wittenborn JS, Zhang X, et al. Forecasting age-related macular degeneration through the year 2050: the potential impact of new treatments. Arch Ophthalmol. 2009;127(4):533–540. doi:10.1001/archophthalmol.2009.58
  • Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):e106–e116. doi:10.1016/s2214-109x(13)70145-1
  • Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. 2012;75(1):26–39. doi:10.1016/j.neuron.2012.06.018
  • Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): relationships between the photoreceptor/retinal pigment epithelium/bruch’s membrane/choriocapillaris complex. Mol Aspects Med. 2012;33(4):295–317. doi:10.1016/j.mam.2012.04.005
  • Anguita R, Tasiopoulou A, Shahid S, et al. A review of aflibercept treatment for macular disease. Ophthalmol Ther. 2021;10(3):413–428. doi:10.1007/s40123-021-00354-1
  • Lim LS, Mitchell P, Seddon JM, et al. Age-related macular degeneration. Lancet. 2012;379(9827):1728–1738. doi:10.1016/s0140-6736(12)60282-7
  • Sen P, Agarwal AAK, Bhende P, et al. Treatment outcomes of combination of anti-vascular endothelial growth factor injection and laser photocoagulation in type 1 rop and aprop. Int Ophthalmol. 2022;42(1):95–101. doi:10.1007/s10792-021-02004-8
  • Blencowe H, Lawn JE, Vazquez T, et al. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr Res. 2013;74(Suppl1):35–49. doi:10.1038/pr.2013.205
  • Kim SJ, Port AD, Swan R, et al. Retinopathy of prematurity: a review of risk factors and their clinical significance. Surv Ophthalmol. 2018;63(5):618–637. doi:10.1016/j.survophthal
  • Mintz-Hittner HA, Kennedy KA, Chuang AZ. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med. 2011;364(7):603–615. doi:10.1056/NEJMoa1007374
  • Kychenthal A, Dorta P, Katz X. Zone I retinopathy of prematurity: clinical characteristics and treatment outcomes. Retina. 2006;26(7 Suppl):S11–S15. doi:10.1097/01.iae.0000244285.79004.e6
  • Lee JH, Canny MD, De Erkenez A, et al. A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of vegf165. Proc Natl Acad Sci U S A. 2005;102(52):18902–18907. doi:10.1073/pnas.0509069102
  • Gragoudas ES, Adamis AP, Cunningham ET Jr, et al. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med. 2004;351(27):2805–2816. doi:10.1056/NEJMoa042760
  • Ferrara N, Hillan KJ, Novotny W. Bevacizumab (avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem Biophys Res Commun. 2005;333(2):328–335. doi:10.1016/j.bbrc.2005.05.132
  • Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27(5):740–745. doi:10.1200/jco.2008.16.3055
  • Spasic M, Chow F, Tu C, et al. Molecular characteristics and pathways of avastin for the treatment of glioblastoma multiforme. Neurosurg Clin N Am. 2012;23(3):417–427. doi:10.1016/j.nec.2012.05.002
  • Rosenfeld PJ, Moshfeghi AA, Puliafito CA. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2005;36(4):331–335.
  • Ferrara N, Damico L, Shams N, et al. Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration. Retina. 2006;26(8):859–870. doi:10.1097/01.iae.0000242842
  • Platania CB, Di Paola L, Leggio GM, et al. Molecular features of interaction between VEGFA and anti-angiogenic drugs used in retinal diseases: a computational approach. Front Pharmacol. 2015;6:248. doi:10.3389/fphar.2015.00248
  • Yang J, Wang X, Fuh G, et al. Comparison of binding characteristics and in vitro activities of three inhibitors of vascular endothelial growth factor A. Mol Pharm. 2014;11(10):3421–3430. doi:10.1021/mp500160v
  • Rosenfeld PJ, Brown DM, Heier JS, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1419–1431. doi:10.1056/NEJMoa054481
  • Pham B, Thomas SM, Lillie E, et al. Anti-vascular endothelial growth factor treatment for retinal conditions: a systematic review and meta-analysis. BMJ Open. 2019;9(5):e022031. doi:10.1136/bmjopen-2018-022031
  • Heier JS, Brown DM, Chong V, et al. Intravitreal aflibercept (VEGF trap-eye) in wet age-related macular degeneration. Ophthalmology. 2012;119(12):2537–2548. doi:10.1016/j.ophtha.2012.09.006
  • Arrigo A, Bandello F. Molecular features of classic retinal drugs, retinal therapeutic targets and emerging treatments. Pharmaceutics. 2021;13(7). doi:10.3390/pharmaceutics.13071102
  • Zhang M, Zhang J, Yan M, et al. Recombinant anti-vascular endothelial growth factor fusion protein efficiently suppresses choroidal neovascularization in monkeys. Mol Vis. 2008;14:37–49.
  • Suto K, Yamazaki Y, Morita T, et al. Crystal structures of novel vascular endothelial growth factors (VEGF) from snake venoms: insight into selective VEGF binding to kinase insert domain-containing receptor but not to fms-like tyrosine kinase-1. J Biol Chem. 2005;280(3):2126–2131. doi:10.1074/jbc.M411395200
  • Yannuzzi NA, Freund KB. Brolucizumab: evidence to date in the treatment of neovascular age-related macular degeneration. Clin Ophthalmol. 2019;13:1323–1329. doi:10.2147/opth.s184706
  • Nguyen QD, Das A, Do DV, et al. Brolucizumab: evolution through preclinical and clinical studies and the implications for the management of neovascular age-related macular degeneration. Ophthalmology. 2020;127(7):963–976. doi:10.1016/j.ophtha.2019.12.031
  • Rodrigues GA, Mason M, Christie LA, et al. Functional characterization of abicipar-pegol, an anti-VEGF darpin therapeutic that potently inhibits angiogenesis and vascular permeability. Invest Ophthalmol Vis Sci. 2018;59(15):5836–5846. doi:10.1167/iovs.18-25307
  • Nicolò M, Ferro Desideri L, Vagge A, et al. Faricimab: an investigational agent targeting the tie-2/angiopoietin pathway and VEGF-a for the treatment of retinal diseases. Expert Opin Investig Drugs. 2021;30(3):193–200. doi:10.1080/13543784.2021.1879791
  • Sahni J, Patel SS, Dugel PU, et al. Simultaneous inhibition of angiopoietin-2 and vascular endothelial growth factor-a with faricimab in diabetic macular edema: boulevard phase 2 randomized trial. Ophthalmology. 2019;126(8):1155–1170. doi:10.1016/j.ophtha.2019.03.023
  • Stern HD, Hussain RM. Ksi-301: an investigational anti-VEGF biopolymer conjugate for retinal diseases. Expert Opin Investig Drugs. 2022;31(5):443–449. doi:10.1080/13543784.2022.2052042
  • Chandrasekaran PR, Madanagopalan VG. Ksi-301: antibody biopolymer conjugate in retinal disorders. Ther Adv Ophthalmol. 2021;13:25158414211027708. doi:10.1177/251.58414211027708
  • Liang H, Huang X, Ngo W, et al. Ksi-301: an anti-VEGF antibody biopolymer conjugate with extended half-life for treatment of neovascular retinal diseases. Invest Ophthalmol Vis Sci. 2018;59:211.
  • Patel S, Naor J, Qudrat A, et al. Phase 1 first-in-human study of ksi-301: a novel anti-VEGF antibody biopolymer conjugate with extended durability. Invest Ophthalmol Vis Sci. 2019;60:3670.
  • Diana V. Extended durability in exudative retinal diseases using the novel intravitreal anti-VEGF antibody biopolymer conjugate ksi-301: update from phase 1b study in patients with wamd, dme and rvo. In: Angiogenesis, Exudation and Degeneration, 8 February 2020. Kodiak sciences; 2020. https://ir.Kodiak.Com/static-files/81d12c4b-cff4-4298-991c-a80e7be51ec5.
  • Singh SR, Dogra A, Stewart M, et al. Intravitreal ziv-aflibercept: clinical effects and economic impact. Asia Pac J Ophthalmol. 2017;6(6):561–568. doi:10.22608/apo.2017263
  • Chhablani J, Narayanan R, Mathai A, et al. Short-term safety profile of intravitreal ziv-aflibercept. Retina. 2016;36(6):1126–1131. doi:10.1097/iae.0000000000000913
  • Ashraf M, El Kayal H, Souka AAR. Comparison between the short-term outcomes of bevacizumab and ziv-aflibercept in the treatment of primary diabetic macular oedema. Acta Ophthalmol. 2017;95(8):e803–e804. doi:10.1111/aos.13352
  • Fogli S, Del Re M, Rofi E, et al. Clinical pharmacology of intravitreal anti-VEGF drugs. Eye. 2018;32(6):1010–1020. doi:10.1038/s41433-018-0021-7
  • Schmidt-Erfurth U, Eldem B, Guymer R, et al. Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the excite study. Ophthalmology. 2011;118(5):831–839. doi:10.1016/j.ophtha.2010.09.004
  • Tseng JJ, Vance SK, Della Torre KE, et al. Sustained increased intraocular pressure related to intravitreal antivascular endothelial growth factor therapy for neovascular age-related macular degeneration. J Glaucoma. 2012;21(4):241–247. doi:10.1097/IJG.0b013e31820.d7d19
  • Ersoz MG, Karacorlu M, Arf S, et al. Retinal pigment epithelium tears: classification, pathogenesis, predictors, and management. Surv Ophthalmol. 2017;62(4):493–505. doi:10.1016/j.survophthal.2017.03.004
  • Lois N, McBain V, Abdelkader E, et al. Retinal pigment epithelial atrophy in patients with exudative age-related macular degeneration undergoing anti-vascular endothelial growth factor therapy. Retina. 2013;33(1):13–22. doi:10.1097/IAE.0b013e3182657fff
  • Gómez-Mariscal M, Puerto B, Muñoz-Negrete FJ, et al. Acute and chronic optic nerve head biomechanics and intraocular pressure changes in patients receiving multiple intravitreal injections of anti-VEGF. Graefes Arch Clin Exp Ophthalmol. 2019;257(10):2221–2231. doi:10.1007/s00417-019-04354-7
  • Filek R, Hooper P, Sheidow TG, et al. Two-year analysis of changes in the optic nerve and retina following anti-VEGF treatments in diabetic macular edema patients. Clin Ophthalmol. 2019;13:1087–1096. doi:10.2147/opth.s199758
  • Konstantinidis L, Ambresin A, Zografos L, et al. Retinal pigment epithelium tears after intravitreal injection of ranibizumab for predominantly classic neovascular membranes secondary to age-related macular degeneration. Acta Ophthalmol. 2010;88(7):736–741. doi:10.1111/j.1755-3768.2009.01547.x
  • Mouallem A, Sarraf D, Chen X, et al. Double retinal pigment epithelium tears in neovascular age-related macular degeneration. Retina. 2016;36(11):2197–2204. doi:10.1097/iae.0000.000000001062
  • Fleckenstein M, Mitchell P, Freund KB, et al. The progression of geographic atrophy secondary to age-related macular degeneration. Ophthalmology. 2018;125(3):369–390. doi:10.1016/j.ophtha.2017.08.038
  • Sophie R, Wang J, Campochiaro PA, et al. Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology. 2014;121(7):e34. doi:10.1016/j.ophtha.2013.12.043
  • Lass JH, Benetz BA, Menegay HJ, et al. Effects of repeated intravitreal aflibercept injection on the corneal endothelium in patients with age-related macular degeneration: outcomes from the re-view study. Cornea. 2018;37(5):596–601. doi:10.1097/ico.0000000000001535
  • Urban B, Szwabowicz M, Bakunowicz-łazarczyk A. Effect of repeated intravitreal ranibizumab and aflibercept injections on the cornea in patients with age-related macular degeneration. J Ophthalmol. 2020;2020:4928905. doi:10.1155/2020/4928905
  • Capella MJ, Alvarez de toledo J, De la paz MF. Insuficiencia limbar secundaria a múltiples inyecciones intravítreas. [Limbal stem cell deficiency following multiple intravitreal injections]. Arch Soc Esp Oftalmol. 2011;86(3):89–92. Spanish. doi:10.1016/j.oftal.2010.11.018
  • Acar U, Erginturk Acar D, Alpaslan Pinarli F, et al. Effects of commonly used intravitreal anti-vascular endothelial growth factor drugs on mesenchymal stem cells derived from the limbus and ciliary body. Clin Exp Ophthalmol. 2016;44(7):587–596. doi:10.1111/ceo.12715
  • Zinkernagel MS, Schorno P, Ebneter A, et al. Scleral thinning after repeated intravitreal injections of antivascular endothelial growth factor agents in the same quadrant. Invest Ophthalmol Vis Sci. 2015;56(3):1894–1900. doi:10.1167/iovs.14-16204
  • Schraermeyer U, Julien S. Effects of bevacizumab in retina and choroid after intravitreal injection into monkey eyes. Expert Opin Biol Ther. 2013;13(2):157–167. doi:10.1517/14712598.2012.748741
  • Kim SW, Woo JE, Yoon YS, et al. Retinal and choroidal changes after anti vascular endothelial growth factor therapy for neovascular age-related macular degeneration. Curr Pharm Des. 2019;25(2):184–189. doi:10.2174/1381612825666190319165824
  • Bonnin P, Pournaras JA, Lazrak Z, et al. Ultrasound assessment of short-term ocular vascular effects of intravitreal injection of bevacizumab (avastin(®)) in neovascular age-related macular degeneration. Acta Ophthalmol. 2010;88(6):641–645. doi:10.1111/j.1755-3768.2009.01526.x
  • Wylęgała A, Wylęgała F, Wylęgała E. Aflibercept treatment leads to vascular abnormalization of the choroidal neovascularization. J Healthc Eng. 2018;2018:8595278. doi:10.1155/2018/8595278
  • Maurice D. Review: practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther. 2001;17(4):393–401. doi:10.1089/108076801753162807
  • Nomoto H, Shiraga F, Kuno N, et al. Pharmacokinetics of bevacizumab after topical, subconjunctival, and intravitreal administration in rabbits. Invest Ophthalmol Vis Sci. 2009;50(10):4807–4813. doi:10.1167/iovs.08-3148
  • Kertes PJ, Galic IJ, Greve M, et al. Canadian treat-and-extend analysis trial with ranibizumab in patients with neovascular age-related macular disease: one-year results of the randomized Canadian treat-and-extend analysis trial with ranibizumab study. Ophthalmology. 2019;126(6):841–848. doi:10.1016/j.ophtha.2019.01.013
  • Gillies M, Arnold J, Bhandari S, et al. Ten-year treatment outcomes of neovascular age-related macular degeneration from two regions. Am J Ophthalmol. 2020;210:116–124. doi:10.1016/j.ajo.2019.10.007
  • Dugel PU, Koh A, Ogura Y, et al. Hawk and harrier: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology. 2020;127(1):72–84. doi:10.1016/j.ophtha.2019.04.017
  • Brynskov T, Munch IC, Larsen TM, et al. Real-world 10-year experiences with intravitreal treatment with ranibizumab and aflibercept for neovascular age-related macular degeneration. Acta Ophthalmol. 2020;98(2):132–138. doi:10.1111/aos.14183
  • Edington M, Connolly J, Chong NV. Pharmacokinetics of intravitreal anti-VEGF drugs in vitrectomized versus non-vitrectomized eyes. Expert Opin Drug Metab Toxicol. 2017;13(12):1217–1224. doi:10.1080/17425255.2017.1404987
  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–1135. doi:10.1016/j.addr.2006.07.027
  • Campochiaro PA, Marcus DM, Awh CC, et al. The port delivery system with ranibizumab for neovascular age-related macular degeneration: results from the randomized phase 2 ladder clinical trial. Ophthalmology. 2019;126(8):1141–1154. doi:10.1016/j.ophtha.2019.03.036
  • Sharma A, Kumar N, Parachuri N, et al. Ranibizumab port delivery system (rpds): realising long awaited dream of prolonged VEGF suppression. Eye. 2020;34(3):422–423. doi:10.1038/s41433-019-0479-y
  • Khanani AM, Callanan D, Dreyer R, et al. End-of-study results for the ladder phase 2 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration. Ophthalmol Retina. 2021;5(8):775–787. doi:10.1016/j.oret.2020.11.004
  • Holekamp NM, Campochiaro PA, Chang MA, et al. Archway randomized phase 3 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration. Ophthalmology. 2022;129(3):295–307. doi:10.1016/j.ophtha.2021.09.016
  • Boyer D. New developments in drug therapy for retinal disorders. In: Hawaiian Eye & Retina Annual Meeting, January 21, 2019. kona, hawaii; 2019.
  • Graybug vision presents top line results of phase 1/2a adagio study at Hawaiian eye & retina; 2019. Available from: https://graybug.Com/graybug-vision-presents-top-line-results-of-phase-1-2a-adagio-study-at-hawaiian-eye-retina-2019/. Accessed September 15, 2022.
  • Delaney-gesing A. Graybug vision releases preliminary topline results of phase 2b altissimo trial. Ophthalmology times; 2021. Available from: https://www.Ophthalmologytimes.Com/view/graybug-vision-releases-preliminary-topline-results-of-phase-2b-altis.simo-trial. Accessed September 15, 2022.
  • Hussain RM, Shaukat BA, Ciulla LM, et al. Vascular endothelial growth factor antagonists: promising players in the treatment of neovascular age-related macular degeneration. Drug Des Devel Ther. 2021;15:2653–2665. doi:10.2147/dddt.s295223
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–1397. doi:10.3390/polym3031377
  • Uhrich KE, Cannizzaro SM, Langer RS, et al. Polymeric systems for controlled drug release. Chem Rev. 1999;99(11):3181–3198. doi:10.1021/cr940351u
  • Wu XS, Wang N. Synthesis, characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part ii: biodegradation. J Biomater Sci Polym Ed. 2001;12(1):21–34. doi:10.1163/156856201744425
  • Rapier CE, Shea KJ, Lee AP. Investigating plga microparticle swelling behavior reveals an interplay of expansive intermolecular forces. Sci Rep. 2021;11(1):14512. doi:10.1038/s41598-021-93785-6
  • Jain RA. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (plga) devices. Biomaterials. 2000;21(23):2475–2490. doi:10.1016/s0142-9612(00)00115-0
  • Yandrapu SK, Upadhyay AK, Petrash JM, et al. Nanoparticles in porous microparticles prepared by supercritical infusion and pressure quench technology for sustained delivery of bevacizumab. Mol Pharm. 2013;10(12):4676–4686. doi:10.1021/mp400487f
  • Varshochian R, Riazi-Esfahani M, Jeddi-Tehrani M, et al. Albuminated plga nanoparticles containing bevacizumab intended for ocular neovascularization treatment. J Biomed Mater Res A. 2015;103(10):3148–3156. doi:10.1002/jbm.a.35446
  • Xie B, Jin L, Luo Z, et al. An injectable thermosensitive polymeric hydrogel for sustained release of avastin® to treat posterior segment disease. Int J Pharm. 2015;490(1–2):375–383. doi:10.1016/j.ijpharm.2015.05.071
  • Ye Z, Ji YL, Ma X, et al. Pharmacokinetics and distributions of bevacizumab by intravitreal injection of bevacizumab-plga microspheres in rabbits. Int J Ophthalmol. 2015;8(4):653–658. doi:10.3980/j.issn.2222-3959.2015.04.02
  • Liu J, Li S, Li G, et al. Highly bioactive, bevacizumab-loaded, sustained-release plga/pcadk microspheres for intravitreal therapy in ocular diseases. Int J Pharm. 2019;563:228–236. doi:10.1016/j.ijpharm.2019.04.012
  • Zhang XP, Sun JG, Yao J, et al. Effect of nanoencapsulation using poly (lactide-co-glycolide) (plga) on anti-angiogenic activity of bevacizumab for ocular angiogenesis therapy. Biomed Pharmacother. 2018;107:1056–1063. doi:10.1016/j.biopha.2018.08.092
  • Hoffart L, Matonti F, Conrath J, et al. Inhibition of corneal neovascularization after alkali burn: comparison of different doses of bevacizumab in monotherapy or associated with dexamethasone. Clin Exp Ophthalmol. 2010;38(4):346–352. doi:10.1111/j.1442-9071.2010.02252.x
  • Liu J, Zhang X, Li G, et al. Anti-angiogenic activity of bevacizumab-bearing dexamethasone-loaded plga nanoparticles for potential intravitreal applications. Int J Nanomedicine. 2019;14:8819–8834. doi:10.2147/ijn.s217038
  • Tanetsugu Y, Tagami T, Terukina T, et al. Development of a sustainable release system for a ranibizumab biosimilar using poly (lactic-co-glycolic acid) biodegradable polymer-based microparticles as a platform. Biol Pharm Bull. 2017;40(2):145–150. doi:10.1248/bpb.b16-00437
  • Kirchhof S, Goepferich AM, Brandl FP. Hydrogels in ophthalmic applications. Eur J Pharm Biopharm. 2015;95:227–238. doi:10.1016/j.ejpb.2015.05.016
  • Yasin MN, Svirskis D, Seyfoddin A, et al. Implants for drug delivery to the posterior segment of the eye: a focus on stimuli-responsive and tunable release systems. J Control Release. 2014;196:208–221. doi:10.1016/j.jconrel.2014.09.030
  • Fangueiro JF, Andreani T, Egea MA, et al. Design of cationic lipid nanoparticles for ocular delivery: development, characterization and cytotoxicity. Int J Pharm. 2014;461(1–2):64–73. doi:10.1016/j.ijpharm.2013.11.025
  • Costa JR, Silva NC, Sarmento B, et al. Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur J Clin Microbiol Infect Dis. 2015;34(6):1255–1262. doi:10.1007/s10096-015-2344-7
  • Lim HL, Hwang Y, Kar M, et al. Smart hydrogels as functional biomimetic systems. Biomater Sci. 2014;2(5):603–618. doi:10.1039/c3bm60288e
  • Cooper RC, Yang H. Hydrogel-based ocular drug delivery systems: emerging fabrication strategies, applications, and bench-to-bedside manufacturing considerations. J Control Release. 2019;306:29–39. doi:10.1016/j.jconrel.2019.05.034
  • Meyer CH, Krohne TU, Charbel Issa P, et al. Routes for drug delivery to the eye and retina: intravitreal injections. Dev Ophthalmol. 2016;55:63–70. doi:10.1159/000431143
  • Xu L, Cooper RC, Wang J, et al. Synthesis and application of injectable bioorthogonal dendrimer hydrogels for local drug delivery. ACS Biomater Sci Eng. 2017;3(8):1641–1653. doi:10.1021/acsbiomaterials.7b00166
  • Adamson P, Wilde T, Dobrzynski E, et al. Single ocular injection of a sustained-release anti-VEGF delivers 6months pharmacokinetics and efficacy in a primate laser CNV model. J Control Release. 2016;244:1–13. doi:10.1016/j.jconrel.2016.10.026
  • Yu Y, Lau LC, Lo AC, et al. Injectable chemically crosslinked hydrogel for the controlled release of bevacizumab in vitreous: a 6-month in vivo study. Transl Vis Sci Technol. 2015;4(2):5. doi:10.1167/tvst.4.2.5
  • Yu Y, Lin X, Wang Q, et al. Long-term therapeutic effect in nonhuman primate eye from a single injection of anti-VEGF controlled release hydrogel. Bioeng Transl Med. 2019;4(2):e10128. doi:10.1002/btm2.10128
  • Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev. 2001;52(2):117–126. doi:10.1016/s0169-409x(01)00231-9
  • Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62(1):83–99. doi:10.1016/j.addr.2009.07.019
  • Ways M, Lau TM, Khutoryanskiy VV. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers. 2018;10(3). doi:10.3390/polym10030267
  • Peers S, Montembault A, Ladavière C. Chitosan hydrogels for sustained drug delivery. J Control Release. 2020;326:150–163. doi:10.1016/j.jconrel.2020.06.012
  • Pandit J, Sultana Y, Aqil M. Chitosan-coated plga nanoparticles of bevacizumab as novel drug delivery to target retina: optimization, characterization, and in vitro toxicity evaluation. Artif Cells Nanomed Biotechnol. 2017;45(7):1397–1407. doi:10.1080/21691401.20161243545
  • Fletcher NA, Krebs MD. Sustained delivery of anti-VEGF from injectable hydrogel systems provides a prolonged decrease of endothelial cell proliferation and angiogenesis in vitro. RSC Adv. 2018;8(16):8999–9005. doi:10.1039/c7ra13014g
  • Abrishami M, Zarei-Ghanavati S, Soroush D, et al. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina. 2009;29(5):699–703. doi:10.1097/IAE.0b013e3181a2f42a
  • Mu H, Wang Y, Chu Y, et al. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Deliv. 2018;25(1):1372–1383. doi:10.1080/10717544.2018.1474967
  • Bisht R, Jaiswal JK, Chen YS, et al. Light-responsive in situ forming injectable implants for effective drug delivery to the posterior segment of the eye. Expert Opin Drug Deliv. 2016;13(7):953–962. doi:10.1517/17425247.2016.1163334
  • Dvir T, Banghart MR, Timko BP, et al. Photo-targeted nanoparticles. Nano Lett. 2010;10(1):250–254. doi:10.1021/nl903411s
  • Wang Y, Liu CH, Ji T, et al. Intravenous treatment of choroidal neovascularization by photo-targeted nanoparticles. Nat Commun. 2019;10(1):804. doi:10.1038/s41467-019-08690-4
  • Huu VA, Luo J, Zhu J, et al. Light-responsive nanoparticle depot to control release of a small molecule angiogenesis inhibitor in the posterior segment of the eye. J Control Release. 2015;200:71–77. doi:10.1016/j.jconrel.2015.01.001
  • Nadarassan DK. Sustained release of bevacizumab (avastin) from biosilicon. Invest Ophthalmol Vis Sci. 2014;55(13):1950.
  • Nagai N, Nezhad ZK, Daigaku R, et al. Transscleral sustained ranibizumab delivery using an episcleral implantable device: suppression of laser-induced choroidal neovascularization in rats. Int J Pharm. 2019;567:118458. doi:10.1016/j.ijpharm.2019.118458
  • Burgalassi S, Monti D, Nicosia N, et al. Freeze-dried matrices for ocular administration of bevacizumab: a comparison between subconjunctival and intravitreal administration in rabbits. Drug Deliv Transl Res. 2018;8(3):461–472. doi:10.1007/s13346-018-0520-x