383
Views
3
CrossRef citations to date
0
Altmetric
Review

A Review on the Antiviral Activity of Functional Foods Against COVID-19 and Viral Respiratory Tract Infections

ORCID Icon, , & ORCID Icon
Pages 4817-4835 | Published online: 10 May 2022

References

  • Eastin C, Eastin T. Clinical Characteristics of Coronavirus Disease 2019 in China. J Emerg Med. 2020;58(4):711–712. doi:10.1016/j.jemermed.2020.04.004
  • Li H, Liu S-M, Yu X-H, Tang S-L, Tang C-K. Coronavirus disease 2019 (COVID-19): current status and future perspectives. Int J Antimicrob Agents. 2020;55(5):105951. doi:10.1016/j.ijantimicag.2020.105951
  • WHO. WHO Director-General’s opening remarks at the media briefing on COVID-19-11 March 2020; 2020. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020. Accessed April 29, 2022.
  • WHO. Coronavirus disease (COVID-19) pandemic; 2021. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=Cj0KCQjwhr2FBhDbARIsACjwLo0FJkdT5PTcunihUBPJyFtwDQEt3PpdwrruMFnty373l3vGntvloH4aAlqlEALw_wcB. Accessed April 29, 2022.
  • Grant WB, Lahore H, McDonnell SL, et al. Evidence that vitamin d supplementation could reduce risk of influenza and covid-19 infections and deaths. Nutrients. 2020;12(4):988. doi:10.3390/nu12040988
  • Sheikh BY, Sarker MMR, Kamarudin MNA, Ismail A. Prophetic medicine as potential functional food elements in the intervention of cancer: a review. Biomed Pharmacother. 2017;95:614–648. doi:10.1016/j.biopha.2017.08.043
  • Liao SC, Hsu WH, Huang ZY, et al. Bioactivity evaluation of a novel formulated curcumin. Nutrients. 2019;11(12):2982. doi:10.3390/nu11122982
  • Quero J, Mármol I, Cerrada E, Rodríguez-Yoldi MJ. Insight into the potential application of polyphenol-rich dietary intervention in degenerative disease management. Food Funct. 2020;11(4):2805–2825. doi:10.1039/d0fo00216j
  • Mehany T, Khalifa I, Barakat H, Althwab SA, Alharbi YM, El-Sohaimy S. Polyphenols as promising biologically active substances for preventing SARS-CoV-2: a review with research evidence and underlying mechanisms. Food Biosci. 2021;40:100891. doi:10.1016/j.fbio.2021.100891
  • López-Varela S, González-Gross M, Marcos A. Functional foods and the immune system: a review. Eur J Clin Nutr. 2002;56(3):S29–S33. doi:10.1038/sj.ejcn.1601481
  • Calder PC, Kew S. The immune system: a target for functional foods? Br J Nutr. 2002;88(S2):S165–S176. doi:10.1079/BJN2002682
  • Hariyanto TI, Intan D, Hananto JE, Harapan H, Kurniawan A. Vitamin D supplementation and Covid-19 outcomes: a systematic review, meta-analysis and meta-regression. Rev Med Virol. 2022;32(2):e2269. doi:10.1002/rmv.2269
  • Lugito NPH, Kurniawan A, Damay V, Chyntya H, Sugianto N. The role of gut microbiota in SARS-CoV-2 infection: focus on angiotensin-converting enzyme 2. Curr Med Issues. 2020;18(3):261.
  • Vukasović T. Chapter 20 - Functional foods in line with young consumers: challenges in the marketplace in Slovenia. In: Bagchi D, editor. Nair SBT-DNFF and NP. San Diego: Academic Press; 2017:391–405. doi:10.1016/B978-0-12-802780-6.00020-1
  • Varzakas T, Kandylis P, Dimitrellou D, Salamoura C, Zakynthinos G, Proestos C. 6 - Innovative and fortified food: probiotics, prebiotics, GMOs, and superfood. Ali ME; Nizar NNABT-P and P of R and CF, editor. Woodhead Publishing Series in Food Science, Technology and Nutrition;Woodhead Publishing. 2018. 67–129. doi:10.1016/B978-0-08-101892-7.00006-7
  • Roberfroid MB. 1 - Defining functional foods. In: Gibson GR, Williams CMBT-F-F editors. Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing; 2000:9–27. doi:10.1533/9781855736436.1.9.
  • Hasler CM. Functional Foods: benefits, Concerns and Challenges—A Position Paper from the American Council on Science and Health. J Nutr. 2002;132(12):3772–3781. doi:10.1093/jn/132.12.3772
  • Yang Y, Islam MS, Wang J, Li Y, Chen X. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): a Review and Perspective. Int J Biol Sci. 2020;16(10):1708–1717. doi:10.7150/ijbs.45538
  • Maryam M. Antiviral activity of traditional Chinese medicinal plants Dryopteris crassirhizoma and Morus alba against dengue virus. J Integr Agric. 2020;19(4):1085–1096. doi:10.1016/S2095-3119(19
  • Amber R, Adnan M, Tariq A, Mussarat S. A review on antiviral activity of the Himalayan medicinal plants traditionally used to treat bronchitis and related symptoms. J Pharm Pharmacol. 2017;69(2):109–122. doi:10.1111/jphp.12669
  • Yang F, Zhang Y, Tariq A, et al. Food as medicine: a possible preventive measure against coronavirus disease (COVID-19). Phytother Res. 2020;34(12):3124–3136. doi:10.1002/ptr.6770
  • Larsen JR, Martin MR, Martin JD, Kuhn P, Hicks JB. Modeling the Onset of Symptoms of COVID-19. Front Public Heal. 2020;8:473. doi:10.3389/fpubh.2020.00473
  • Vasquez-Bonilla WO, Orozco R, Argueta V, et al. A review of the main histopathological findings in coronavirus disease 2019. Hum Pathol. 2020;105:74–83. doi:10.1016/j.humpath.2020.07.023
  • Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361(9374):2045–2046. doi:10.1016/S0140-6736(03
  • Hoever G, Baltina L, Michaelis M, et al. Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J Med Chem. 2005;48(4):1256–1259. doi:10.1021/jm0493008
  • Krawitz C, Mraheil MA, Stein M, et al. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses. BMC Complement Altern Med. 2011;11:16. doi:10.1186/1472-6882-11-16
  • Barak V, Halperin T, Kalickman I. The effect of Sambucol, a black elderberry-based natural product, on the production of human cytokines: i. Inflammatory cytokines. Eur Cytokine Netw. 2001;12(2):290–296.
  • Anywar G, Kakudidi E, Byamukama R, Mukonzo J, Schubert A, Oryem-Origa H. Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda. Eur J Integr Med. 2020;35:101011. doi:10.1016/j.eujim.2019.101011
  • Rouf R, Uddin SJ, Sarker DK, et al. Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: a systematic update of pre-clinical and clinical data. Trends Food Sci Technol. 2020;104:219–234. doi:10.1016/j.tifs.2020.08.006
  • Lissiman E, Bhasale AL, Cohen M. Garlic for the common cold. Cochrane Database Syst Rev. 2014;2014(11):CD006206–CD006206. doi:10.1002/14651858.CD006206.pub4
  • Moradi M-T, Karimi A, Shahrani M, Hashemi L, Ghaffari-Goosheh M-S. Anti-Influenza Virus Activity and Phenolic Content of Pomegranate (Punica granatum L.) Peel Extract and Fractions. Avicenna J Med Biotechnol. 2019;11(4):285–291.
  • Nikolaeva-Glomb L, Mukova L, Nikolova N, et al. In Vitro Antiviral Activity of a Series of Wild Berry Fruit Extracts against Representatives of Picorna-, Orthomyxo- and Paramyxoviridae. Nat Prod Commun. 2014;9(1):1934578X1400900116. doi:10.1177/1934578X1400900116
  • Del Bo C, Bernardi S, Marino M, et al. Systematic Review on Polyphenol Intake and Health Outcomes: is there Sufficient Evidence to Define a Health-Promoting Polyphenol-Rich Dietary Pattern? Nutrients. 2019;11(6):1355. doi:10.3390/nu11061355
  • Yao LH, Jiang YM, Shi J, et al. Flavonoids in food and their health benefits. Plant Foods Hum Nutr. 2004;59(3):113–122. doi:10.1007/s11130-004-0049-7
  • González-Gallego J, García-Mediavilla MV, Sánchez-Campos S, Tuñó MJ. Fruit polyphenols, immunity and inflammation. Br J Nutr. 2010;104(SUPPL.3):S15–S27. doi:10.1017/S0007114510003910
  • Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ. 2017;356:i6583. doi:10.1136/bmj.i6583
  • Wang Z, Yang L. Turning the Tide: natural Products and Natural-Product-Inspired Chemicals as Potential Counters to SARS-CoV-2 Infection. Front Pharmacol. 2020;2:11.
  • Wang Z, Yang L. Chinese herbal medicine: fighting SARS-CoV-2 infection on all fronts. J Ethnopharmacol. 2021;270:113869. doi:10.1016/j.jep.2021.113869
  • Standish LJ, Wenner CA, Sweet ES, et al. Trametes versicolor mushroom immune therapy in breast cancer. J Soc Integr Oncol. 2008;6(3):122–128.
  • Watanabe K, Rahmasari R, Matsunaga A, Haruyama T, Kobayashi N. Anti-influenza Viral Effects of Honey In Vitro: potent High Activity of Manuka Honey. Arch Med Res. 2014;45(5):359–365. doi:10.1016/j.arcmed.2014.05.006
  • Al-Waili NS. Topical honey application vs. Acyclovir for the treatment of recurrent herpes simplex lesions. Med Sci Monit. 2004;10(8):MT94–MT98.
  • Chang JS, Wang KC, Yeh CF, Shieh DE, Chiang LC. Fresh ginger (Zingiber officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J Ethnopharmacol. 2013;145(1):146–151. doi:10.1016/j.jep.2012.10.043
  • Salem ML, Hossain MS. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int J Immunopharmacol. 2000;22(9):729–740. doi:10.1016/S0192-0561(00
  • Pourghanbari G, Nili H, Moattari A, Mohammadi A, Iraji A. Antiviral activity of the oseltamivir and Melissa officinalis L. essential oil against avian influenza A virus (H9N2). Virusdisease. 2016;27(2):170–178. doi:10.1007/s13337-016-0321-0
  • Geuenich S, Goffinet C, Venzke S, et al. Aqueous extracts from peppermint, sage and lemon balm leaves display potent anti-HIV-1 activity by increasing the virion density. Retrovirology. 2008;5:27. doi:10.1186/1742-4690-5-27
  • Velthuis AJW, Worml SHE, Sims AC, Baric RS, Snijder EJ, Hemert MJ. Zn2+ inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6:11. doi:10.1371/journal.ppat.1001176
  • Rink L, Kirchner H. Zinc-Altered Immune Function and Cytokine Production. J Nutr. 2000;130(5):1407S–1411S. doi:10.1093/jn/130.5.1407S
  • Turvey SE, Broide DH. Innate immunity. J Allergy Clin Immunol. 2010;125(2 Suppl 2):S24–S32. doi:10.1016/j.jaci.2009.07.016
  • Quiles JL, Rivas-García L, Varela-López A, Llopis J, Battino M, Sánchez-González C. Do nutrients and other bioactive molecules from foods have anything to say in the treatment against COVID-19? Environ Res. 2020;191(August):54. doi:10.1016/j.envres.2020.110053
  • Hemilä H. Vitamin C and SARS coronavirus. J Antimicrob Chemother. 2003;52(6):1049–1050. doi:10.1093/jac/dkh002
  • Abobaker A, Alzwi A, Alraied AHA. Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Reports. 2020;72(6):1517–1528. doi:10.1007/s43440-020-00176-1
  • Carr AC, Rowe S. The emerging role of vitamin C in the prevention and treatment of COVID-19. Nutrients. 2020;12(11):3286.
  • Rayman MP. The importance of selenium to human health. Lancet. 2000;356(9225):233–241. doi:10.1016/S0140-6736(00
  • Nkengfack G, Englert H, Haddadi M. Selenium and immunity. In: Nutrition and Immunity. Springer; 2019:159–165.
  • Michaelis M, Geiler J, Naczk P, et al. Glycyrrhizin inhibits highly pathogenic H5N1 influenza A virus-induced pro-inflammatory cytokine and chemokine expression in human macrophages. Med Microbiol Immunol. 2010;199(4):291–297. doi:10.1007/s00430-010-0155-0
  • Utsunomiya T, Kobayashi M, Pollard RB, Suzuki F. Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrob Agents Chemother. 1997;41(3):551–556. doi:10.1128/AAC.41.3.551
  • Sriwilaijaroen N, Fukumoto S, Kumagai K, et al. Antiviral effects of Psidium guajava Linn. (guava) tea on the growth of clinical isolated H1N1 viruses: its role in viral hemagglutination and neuraminidase inhibition. Antiviral Res. 2012;94(2):139–146. doi:10.1016/j.antiviral.2012.02.013
  • Sundararajan A, Ganapathy R, Huan L, et al. Influenza virus variation in susceptibility to inactivation by pomegranate polyphenols is determined by envelope glycoproteins. Antiviral Res. 2010;88(1):1–9. doi:10.1016/j.antiviral.2010.06.014
  • Ding Y, Dou J, Teng Z, et al. Antiviral activity of baicalin against influenza A (H1N1/H3N2) virus in cell culture and in mice and its inhibition of neuraminidase. Arch Virol. 2014;159(12):3269–3278. doi:10.1007/s00705-014-2192-2
  • Ho J-Y, Chang H-W, Lin C-F, Liu C-J, Hsieh C-F, Horng J-T. Characterization of the anti-influenza activity of the Chinese herbal plant Paeonia lactiflora. Viruses. 2014;6(4):1861–1875. doi:10.3390/v6041861
  • Nahas R, Balla A. Complementary and alternative medicine for prevention and treatment of the common cold. Can Fam Physician. 2011;57(1):31–36.
  • Moyad MA, Robinson LE, Zawada ET, et al. Effects of a modified yeast supplement on cold/flu symptoms. Urol Nurs. 2008;28(1):50–55.
  • Wakabayashi H, Oda H, Yamauchi K, Abe F. Lactoferrin for prevention of common viral infections. J Infect Chemother. 2014;20(11):666–671.
  • Leyer GJ, Li S, Mubasher ME, Reifer C, Ouwehand AC. Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics. 2009;124(2):e172–e179.
  • Singh P, Tripathi MK, Yasir M, Khare R, Tripathi MK, Shrivastava R. Potential Inhibitors for SARS-CoV-2 and Functional Food Components as Nutritional Supplement for COVID-19: a Review. Plant Foods Hum Nutr. 2020;75(4):458–466. doi:10.1007/s11130-020-00861-9
  • Yan F, Polk DB. Probiotics and immune health. Curr Opin Gastroenterol. 2011;27(6):496–501. doi:10.1097/MOG.0b013e32834baa4d
  • Manna S, Chowdhury T, Chakraborty R, Mandal SM. Probiotics-Derived Peptides and Their Immunomodulatory Molecules Can Play a Preventive Role Against Viral Diseases Including COVID-19. Probiotics Antimicrob Proteins. 2020. doi:10.1007/s12602-020-09727-7
  • Li J, Zhao J, Wang X, et al. Novel Angiotensin-Converting Enzyme-Inhibitory Peptides From Fermented Bovine Milk Started by Lactobacillus helveticus KLDS.31 and Lactobacillus casei KLDS.105: purification, Identification, and Interaction Mechanisms. Front Microbiol. 2019;10:2643. doi:10.3389/fmicb.2019.02643
  • Verma A, Xu K, Du T, et al. Expression of Human ACE2 in Lactobacillus and Beneficial Effects in Diabetic Retinopathy in Mice. Mol Ther. 2019;14(September):161–170. doi:10.1016/j.omtm.2019.06.007
  • Rizzo P, Sega F, Fortini F, Marracino L, Rapezzi C, Ferrari R. COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Res Cardiol. 2020;115(3):1–8. doi:10.1007/s00395-020-0791-5
  • Gorji A, Khaleghi Ghadiri M. Potential roles of micronutrient deficiency and immune system dysfunction in the coronavirus disease 2019 (COVID-19) pandemic. Nutrition. 2021;2:82. doi:10.1016/j.nut.2020.111047
  • Galanakis CM, Aldawoud TMS, Rizou M, Rowan NJ, Ibrahim SA. Food Ingredients and Active Compounds against the Coronavirus Disease (COVID-19) Pandemic: a Comprehensive Review. Foods. 2020;9(11):1701. doi:10.3390/foods9111701
  • Lange KW. Food science and COVID-19. Food Sci Hum Wellness. 2021;10(1):1–5. doi:10.1016/j.fshw.2020.08.005
  • Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front Immunol. 2020;2:11. doi:10.3389/fimmu.2020.570122
  • Thirumdas R, Kothakota A, Pandiselvam R, Bahrami A, Barba FJ. Role of food nutrients and supplementation in fighting against viral infections and boosting immunity: a review. Trends Food Sci Technol. 2021;110:(January):66–77. doi:10.1016/j.tifs.2021.01.069
  • Wang Z, Yang L, Zhao X-E. Co-crystallization and structure determination: an effective direction for anti-SARS-CoV-2 drug discovery. Comput Struct Biotechnol J. 2021;19:4684–4701. doi:10.1016/j.csbj.2021.08.029
  • Lalani S, Poh CL. Flavonoids as Antiviral Agents for Enterovirus A71 (EV-A71). Viruses. 2020;12:2. doi:10.3390/v12020184
  • Pastor N, Collado MC, Manzoni P. Phytonutrient and nutraceutical action against COVID-19: current review of characteristics and benefits. Nutrients. 2021;13(2):1–10. doi:10.3390/nu13020464
  • Ninfali P, Antonelli A, Magnani M, Scarpa ES. Antiviral properties of flavonoids and delivery strategies. Nutrients. 2020;12(9):2534.
  • Ubani A, Agwom F, RuthMorenikeji O, et al. Molecular docking analysis of some phytochemicals on two SARS-COV-2 targets: potential lead compounds against two target sites of SARS-COV-2 obtained from plants. bioRxiv. 2020. doi:10.1101/2020.03.31.017657
  • Jain AS, Sushma P, Dharmashekar C, et al. In silico evaluation of flavonoids as effective antiviral agents on the spike glycoprotein of SARS-CoV-2. Saudi J Biol Sci. 2021;28(1):1040–1051. doi:10.1016/j.sjbs.2020.11.049
  • Yudi Utomo R, Meiyanto E. Revealing the Potency of Citrus and Galangal Constituents to Halt SARS-CoV-2 Infection. Aging. 2020;1(March):1–8. doi:10.20944/preprints202003.0214.v1
  • Sekiou O, Bouziane I, Bouslama Z, Djemel A. In-Silico Identification of Potent Inhibitors of COVID-19 Main Protease (Mpro) and Angiotensin Converting Enzyme 2 (ACE2) from Natural Products: quercetin, Hispidulin, and Cirsimaritin Exhibited Better Potential Inhibition than Hydroxy-Chloroquine against. ChemRxiv. 2020;2(1):56. doi:10.26434/chemrxiv.12181404.v1
  • Pandit M. In silico studies reveal potential antiviral activity of phytochemicals from medicinal plants for the treatment of COVID-19 infection. J Med. 2020;2:1–38. doi:10.21203/rs.3.rs-22687/v1
  • Sargiacomo C, Sotgia F, Lisanti MP. COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of Corona virus infection? Aging. 2020;12(8):6511–6517. doi:10.18632/AGING.103001
  • Yi L, Li Z, Yuan K, et al. Small Molecules Blocking the Entry of Severe Acute Respiratory Syndrome Coronavirus into Host Cells. J Virol. 2004;78(20):11334–11339. doi:10.1128/jvi.78.20.11334-11339.2004
  • Dai W, Zhang B, Jiang XM, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020;368(6497):1331–1335. doi:10.1126/science.abb4489
  • Paraiso IL, Revel JS, Stevens JF. Potential use of polyphenols in the battle against COVID-19. Curr Opin Food Sci. 2020;32:149–155. doi:10.1016/j.cofs.2020.08.004
  • Zhang D, Wu K, Zhang X. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med. 2020;18(2):152–158. doi:10.1016/j.joim.2020.02.005
  • Wang Z, Yang L. Broad-spectrum prodrugs with anti-SARS-CoV-2 activities: strategies, benefits, and challenges. J Med Virol. 2022;94(4):1373–1390. doi:10.1002/jmv.27517
  • Yang L, Wang Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomed. 2021;9:6. doi:10.3390/biomedicines9060689
  • Singh S, Sk MF, Sonawane A, Kar P, Sadhukhan S. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA‐dependent RNA polymerase (RdRp) inhibition: an in-silico analysis. J Biomol Struct Dyn. 2020;1:1–16. doi:10.1080/07391102.2020.1796810
  • Jo S, Kim S, Shin DH, Kim MS. Inhibition of SARS-CoV 3CL protease by flavonoids. J Enzyme Inhib Med Chem. 2020;35(1):145–151. doi:10.1080/14756366.2019.1690480
  • Jo S, Kim S, Kim DY, Kim M-S, Shin DH. Flavonoids with inhibitory activity against SARS-CoV-2 3CLpro. J Enzyme Inhib Med Chem. 2020;35(1):1539–1544.
  • Derosa G, Maffioli P, D’Angelo A, Di Pierro F. A role for quercetin in coronavirus disease 2019 (COVID-19). Phyther Res. 2020;1(September):1–7. doi:10.1002/ptr.6887
  • Colunga Biancatelli RML, Berrill M, Catravas JD, Marik PE. Quercetin and Vitamin C: an Experimental, Synergistic Therapy for the Prevention and Treatment of SARS-CoV-2 Related Disease (COVID-19). Front Immunol. 2020;11(June):1–11. doi:10.3389/fimmu.2020.01451
  • Schettig R, Sears T, Klein M, et al. COVID-19 Patient with Multifocal Pneumonia and Respiratory Difficulty Resolved Quickly: possible Antiviral and Anti-Inflammatory Benefits of Quercinex (Nebulized Quercetin-NAC) as Adjuvant. Adv Infect Dis. 2020;10(03):45–55. doi:10.4236/aid.2020.103006
  • Roy A, Sarkar B, Celik C, et al. Can concomitant use of zinc and curcumin with other immunity-boosting nutraceuticals be the arsenal against COVID-19? Phyther Res. 2020;34(10):2425–2428. doi:10.1002/ptr.6766
  • Anjum SI, Ullah A, Khan KA, et al. Composition and functional properties of propolis (bee glue): a review. Saudi J Biol Sci. 2019;26(7):1695–1703. doi:10.1016/j.sjbs.2018.08.013
  • Kwon MJ, Shin HM, Perumalsamy H, Wang X, Ahn YJ. Antiviral effects and possible mechanisms of action of constituents from Brazilian propolis and related compounds. J Apic Res. 2020;59(4):413–425. doi:10.1080/00218839.2019.1695715
  • Bachevski D, Damevska K, Simeonovski V, Dimova M. Back to the basics: propolis and COVID-19. Dermatol Ther. 2020;33:4. doi:10.1111/dth.13780
  • Debiaggi M, Tateo F, Pagani L, Luini M, Romero E. Effects of propolis flavonoids on virus infectivity and replication. Microbiologica. 1990;13(3):207–213.
  • Berretta AA, Silveira MAD, Cóndor Capcha JM, De jong D. Propolis and its potential against SARS-CoV-2 infection mechanisms and COVID-19 disease: running title: propolis against SARS-CoV-2 infection and COVID-19. Biomed Pharmacother. 2020;131(August):65. doi:10.1016/j.biopha.2020.110622
  • Ş A, Eyupoglu V, Sarfraz I, et al. Caffeic acid derivatives (CAFDs) as inhibitors of SARS-CoV-2: cAFDs-based functional foods as a potential alternative approach to combat COVID-19. Phytomedicine. 2020;1(April):153310. doi:10.1016/j.phymed.2020.153310
  • Osés SM, Marcos P, Azofra P, et al. Phenolic Profile, Antioxidant Capacities and Enzymatic Inhibitory Activities of Propolis from Different Geographical Areas: needs for Analytical Harmonization. J Med. 2020;1:20–35. doi:10.3390/antiox9010075
  • Kumar V, Dhanjal JK, Kaul SC, Wadhwa R, Sundar D. Withanone and caffeic acid phenethyl ester are predicted to interact with main protease (Mpro) of SARS-CoV-2 and inhibit its activity. J Biomol Struct Dyn. 2020;1:1–13. doi:10.1080/07391102.2020.1772108
  • Hashem HE. IN Silico Approach of Some Selected Honey Constituents as SARS-CoV-2 Main Protease (COVID-19) Inhibitors. Eurasian J Med Oncol. 2020;4(3):196–200. doi:10.14744/ejmo.2020.36102
  • Kumar A, Kubota Y, Chernov M, et al. Potential role of zinc supplementation in prophylaxis and treatment of COVID-19. Antimicrob Agents Chemother. 2009;1865(April):783–790. doi:10.1128/AAC.48.3.783-790.2004
  • Sun S, He J, Liu M, Yin G, Zhang X, Great Concern A. Regarding the Authenticity Identification and Quality Control of Chinese Propolis and Brazilian Green Propolis. J Drug. 2019;7(10):725–735. doi:10.12691/jfnr-7-10-6
  • Hori JI, Zamboni DS, Carrão DB, Goldman GH, Berretta AA. The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF). J med. 2013;1:54.
  • Maruta H, He H. Medicine in Drug Discovery PAK1-blockers: potential Therapeutics against COVID-19. Med Drug Discov. 2020;6:100039. doi:10.1016/j.medidd.2020.100039
  • Oyeniran A, Gyawali R, Aljaloud SO, Krastanov A, Ibrahim SA. Probiotic Characteristics and Health Benefits of the Yogurt Bacterium Lactobacillus delbrueckii sp. Handb Mod Dairy Sci Technol. 2020;2:1–11.
  • Hu J, Zhang L, Lin W, Tang W, Chan FKL, Ng SC. Review article: probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends Food Sci Technol. 2021;108(November2020):187–196. doi:10.1016/j.tifs.2020.12.009
  • Dhar D, Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Res. 2020;285(April):198018. doi:10.1016/j.virusres.2020.198018
  • Costagliola G, Spada E, Comberiati P, Peroni DG. Could nutritional supplements act as therapeutic adjuvants in COVID-19? Ital J Pediatr. 2021;47(1):32.
  • Olaimat AN, Aolymat I, Al-Holy M, et al. The potential application of probiotics and prebiotics for the prevention and treatment of COVID-19. Npj Sci Food. 2020;4:1. doi:10.1038/s41538-020-00078-9
  • Xu Y, Liu L. Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway Background: influenza A viruses (IAV) result in severe public health problems with. Influ Other Respi Viruses. 2017;11:457–463. doi:10.1111/irv.12459
  • Ahlawat S, Asha SKK. Immunological co-ordination between gut and lungs in SARS-CoV-2 infection. Virus Res. 2020;286(June):198103. doi:10.1016/j.virusres.2020.198103
  • Lin L, Jiang X, Zhang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 2020;69(6):997–1001. doi:10.1136/gutjnl-2020-321013
  • Su M, Jia Y, Li Y, Zhou D, Jia J. Probiotics for the prevention of ventilator-associated pneumonia: a meta-analysis of randomized controlled trials. Respir Care. 2020;65(5):673–685. doi:10.4187/respcare.07097
  • Dumas A, Bernard L, Poquet Y, Lugo-Villarino G, Neyrolles O. The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. Cell Microbiol. 2018;20(12):1–9. doi:10.1111/cmi.12966
  • Singh K, Rao A. Probiotics: a potential immunomodulator in COVID-19 infection management. Nutr Res. 2021;87:1–12. doi:10.1016/j.nutres.2020.12.014
  • Baud D, Dimopoulou Agri V, Gibson GR, Reid G, Giannoni E. Using Probiotics to Flatten the Curve of Coronavirus Disease COVID-2019 Pandemic. Front Public Heal. 2020;8:186. doi:10.3389/fpubh.2020.00186
  • Fanos V, Pintus MC, Pintus R, Marcialis MA. Lung microbiota in the acute respiratory disease: from coronavirus to metabolomics. J Pediatr Neonatal Individ Med. 2020;9(1):1–10. doi:10.7363/090139
  • Wan LYM, Chen ZJ, Shah NP, El-Nezami H. Modulation of Intestinal Epithelial Defense Responses by Probiotic Bacteria. Crit Rev Food Sci Nutr. 2016;56(16):2628–2641. doi:10.1080/10408398.2014.905450
  • Anwar F, Altayb HN, Al-Abbasi FA, Al-Malki AL, Kamal MA, Kumar V. Antiviral effects of probiotic metabolites on COVID-19. J Biomol Struct Dyn. 2020;1:1–10. doi:10.1080/07391102.2020.1775123
  • d’Ettorre G, Ceccarelli G, Marazzato M, et al. Challenges in the Management of SARS-CoV2 Infection: the Role of Oral Bacteriotherapy as Complementary Therapeutic Strategy to Avoid the Progression of COVID-19. Front Med. 2020;7:389. doi:10.3389/fmed.2020.00389
  • Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159–166. doi:10.1038/nm.3444
  • Sanchez HN, Moroney JB, Gan H, et al. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nat Commun. 2020;11:1. doi:10.1038/s41467-019-13603-6
  • Chan CKY, Tao J, Chan OS, Bin LH, Pang H. Preventing respiratory tract infections by synbiotic interventions: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr. 2021;11(4):979–988. doi:10.1093/ADVANCES/NMAA003
  • Ashaolu TJ, Saibandith B, Yupanqui CT, Wichienchot S. Human colonic microbiota modulation and branched chain fatty acids production affected by soy protein hydrolysate. Int J Food Sci Technol. 2019;54(1):141–148. doi:10.1111/ijfs.13916
  • Shahramian I, Kalvandi G, Javaherizadeh H, et al. The effects of prebiotic supplementation on weight gain, diarrhoea, constipation, fever and respiratory tract infections in the first year of life. J Paediatr Child Health. 2018;54(8):875–880. doi:10.1111/jpc.13906
  • Gohil K, Samson R, Dastager S, Dharne M. Probiotics in the prophylaxis of COVID-19: something is better than nothing. Biotech. 2021;11(1):1–10. doi:10.1007/s13205-020-02554-1
  • Wu M, Feng H, Song J, et al. Structural elucidation and immunomodulatory activity of a neutral polysaccharide from the Kushui Rose (Rosa setate x Rosa rugosa) waste. Carbohydr Polym. 2020;232(December2019):115804. doi:10.1016/j.carbpol.2019.115804
  • Te LW, Shih PC, Liu SJ, Lin CY, Yeh TL. Effect of probiotics and prebiotics on immune response to influenza vaccination in adults: a systematic review and meta-analysis of randomized controlled trials. Nutrients. 2017;9:11. doi:10.3390/nu9111175
  • Vitetta L, Saltzman ET, Thomsen M, Nikov T, Hall S. Adjuvant Probiotics and the Intestinal Microbiome: enhancing Vaccines and Immunotherapy Outcomes. Vaccines. 2017;5:4. doi:10.3390/vaccines5040050
  • Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr. 2019;10(4):696–710. doi:10.1093/advances/nmz013
  • Zabetakis I, Lordan R, Norton C, Tsoupras A. Covid-19: the inflammation link and the role of nutrition in potential mitigation. Nutrients. 2020;12(5):1–28. doi:10.3390/nu12051466
  • Bagheri M, Haghollahi F, Shariat M, Jafarabadi M, Aryamloo P, Rezayof E. Supplement Usage Pattern in a Group of COVID- 19 Patients in Tehran. J Fam Reprod Heal. 2020;14(3):158–165. doi:10.18502/jfrh.v14i3.4668
  • Razzaque MS. COVID-19 pandemic: can zinc supplementation provide an additional shield against the infection? Comput Struct Biotechnol J. 2021;19:1371–1378. doi:10.1016/j.csbj.2021.02.015
  • Celik C, Gencay A, Ocsoy I. Can food and food supplements be deployed in the fight against the COVID 19 pandemic? Biochim Biophys Acta. 2021;1865(2):129801. doi:10.1016/j.bbagen.2020.129801
  • Kolenko VM, Uzzo RG, Dulin N, Hauzman E, Bukowski R, Finke JH. Mechanism of apoptosis induced by zinc deficiency in peripheral blood T lymphocytes. Apoptosis. 2001;6(6):419–429. doi:10.1023/a:1012497926537:
  • Wessels I, Rolles B, Rink L. The Potential Impact of Zinc Supplementation on COVID-19 Pathogenesis. Front Immunol. 2020;11(July):1–11. doi:10.3389/fimmu.2020.01712
  • Gammoh NZ, Rink L. Zinc in infection and inflammation. Nutrients. 2017;9:6. doi:10.3390/nu9060624
  • Mossink JP. Zinc as nutritional intervention and prevention measure for COVID–19 disease. BMJ Nutr Prev Heal. 2020;3(1):111–117. doi:10.1136/bmjnph-2020-000095
  • Rerksuppaphol S, Rerksuppaphol L, Randomized Controlled A. Trial of Zinc Supplementation in the Treatment of Acute Respiratory Tract Infection in Thai Children. Pediatr Rep. 2019;11(2):15–20. doi:10.4081/pr.2019.7954
  • Yalcin Bahat P, Aldikactioglu Talmac M, Bestel A, Topbas Selcuki NF, Aydın Z, Polat İ. Micronutrients in COVID-19 Positive Pregnancies. Cureus. 2020;12(9):10–14. doi:10.7759/cureus.10609
  • Joachimiak MP. Zinc against covid-19? Symptom surveillance and deficiency risk groups. PLoS Negl Trop Dis. 2021;15(1):1–17. doi:10.1371/journal.pntd.0008895
  • Jothimani D, Kailasam E, Danielraj S, et al. COVID-19: poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343–349. doi:10.1016/j.ijid.2020.09.014
  • Vogel-González M, Talló-Parra M, Herrera-Fernández V, et al. Low zinc levels at admission associates with poor clinical outcomes in sars-cov-2 infection. Nutrients. 2021;13(2):1–13. doi:10.3390/nu13020562
  • Derwand R, Scholz M. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win todays battle against COVID-19? Med Hypotheses. 2020;142(April):109815. doi:10.1016/j.mehy.2020.109815
  • Dubourg G, Lagier J-C, Brouqui P, et al. Low blood zinc concentrations in patients with poor clinical outcome during SARS-CoV-2 infection: is there a need to supplement with Zinc COVID-19 patients? J Microbiol Immunol Infect. 2021;1:3. doi:10.1016/j.jmii.2021.01.012
  • Heller RA, Sun Q, Hackler J, et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol. 2021;38(August2020):101764. doi:10.1016/j.redox.2020.101764
  • Ali N, Fariha KA, Islam F, et al. Assessment of the role of zinc in the prevention of COVID-19 infections and mortality: a retrospective study in the Asian and European population. J Med Virol. 2021;1(March):54w. doi:10.1002/jmv.26932
  • Kumar A, Kubota Y, Chernov M, Kasuya H. Potential role of zinc supplementation in prophylaxis and treatment of COVID-19. Med Hypotheses. 2020;144(April):109848. doi:10.1016/j.mehy.2020.109848
  • Lee MC, Chen Y-K, Hsu Y-J, Lin B-R. Zinc supplement augments the suppressive effects of repurposed drugs of NF-kappa B inhibitor on ACE2 expression in human lung cell lines in vitro. bioRxiv. 2021;3456(7):428372.
  • Chang C-W, Lee M-C, Lin B-R, et al. Azithromycin Plus Zinc Sulfate Rapidly and Synergistically Suppresses IκBα-Mediated In Vitro Human Airway Cell ACE2 Expression for SARS-CoV-2 Entry. bioRxiv. 2021. doi:10.1101/2021.01.19.427206
  • Pormohammad A, Monych NK, Turner RJ. PORMOHAMMAD A. Zinc and SARS-CoV-2: a molecular modeling study of Zn interactions with RNA-dependent RNA-polymerase and 3C-like proteinase enzymes. Int J Mol Med. 2021;47(1):326–334. doi:10.3892/ijmm.2020.4790
  • Provinciali M, Montenovo A, Di Stefano G, et al. Effect of zinc or zinc plus arginine supplementation on antibody titre and lymphocyte subsets after influenza vaccination in elderly subjects: a randomized controlled trial. Age Ageing. 1998;27(6):715–722. doi:10.1093/ageing/27.6.715
  • Health NI of. Office of Dietary Supplements. Zinc Fact Sheet for Health Professionals. Health NI of. Office of Dietary Supplements; 2020.
  • Torabian G, Valtchev P, Adil Q, Dehghani F. Anti-influenza activity of elderberry (Sambucus nigra). J Funct Foods. 2019;54:353–360. doi:10.1016/j.jff.2019.01.031
  • Kinoshita E, Hayashi K, Katayama H, Hayashi T, Obata A. Anti-influenza virus effects of elderberry juice and its fractions. Biosci Biotechnol Biochem. 2012;76(9):1633–1638. doi:10.1271/bbb.120112
  • Wright CI, Van-buren L, Kroner CI, Koning MMG. Herbal medicines as diuretics: a review of the scientific evidence. J Ethnopharmacol. 2007;114(1):1–31. doi:10.1016/j.jep.2007.07.023
  • Liu A-L, Wang H-D, Lee SM, Wang Y-T, Du G-H. Structure–activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorg Med Chem. 2008;16(15):7141–7147. doi:10.1016/j.bmc.2008.06.049
  • Zakay-Rones Z, Thom E, Wollan T, Wadstein J. Randomized Study of the Efficacy and Safety of Oral Elderberry Extract in the Treatment of Influenza A and B Virus Infections. J Int Med Res. 2004;32(2):132–140. doi:10.1177/147323000403200205
  • Tiralongo E, Wee SS, Lea RA. Elderberry Supplementation Reduces Cold Duration and Symptoms in Air-Travellers: a Randomized, Double-Blind Placebo-Controlled Clinical Trial. Nutrients. 2016;8:4. doi:10.3390/nu8040182
  • Schön C, Mödinger Y, Krüger F, Doebis C, Pischel I, Bonnländer B. A new high-quality elderberry plant extract exerts antiviral and immunomodulatory effects in vitro and ex vivo. Food Agric Immunol. 2021;32(1):650–662.
  • Marinella MA. Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19. Int J Clin Pract. 2020;74(9):25–27. doi:10.1111/ijcp.13535
  • Zhao X, Tong W, Song X, et al. Antiviral Effect of Resveratrol in Piglets Infected with Virulent Pseudorabies Virus. Viruses. 2018;10:9. doi:10.3390/v10090457
  • Giordo R, Zinellu A, Eid AH, Pintus G. Therapeutic Potential of Resveratrol in COVID-19-Associated Hemostatic Disorders. Molecules. 2021;26:4. doi:10.3390/molecules26040856
  • Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 2017;17(1):1–10. doi:10.1186/s12879-017-2253-8
  • Horne J. SARS-CoV illness severity. JournalsPhysiology. 2020;2(418):1–15.
  • Oliveira Andrade JM, Paraíso AF, Garcia ZM, et al. Cross talk between angiotensin-(1–7)/Mas axis and sirtuins in adipose tissue and metabolism of high-fat feed mice. Peptides. 2014;55:158–165. doi:10.1016/j.peptides.2014.03.006
  • Zhao X, Xu J, Song X, et al. Antiviral effect of resveratrol in ducklings infected with virulent duck enteritis virus. Antiviral Res. 2016;130:93–100. doi:10.1016/j.antiviral.2016.03.014
  • Beijers RJHCG, Gosker HR, Schols AMWJ. Resveratrol for patients with chronic obstructive pulmonary disease: hype or hope? Curr Opin Clin Nutr Metab Care. 2018;21(2):138–144. doi:10.1097/MCO.0000000000000444
  • Franciosoa A, Mastromarino P, Masci A, d’Erme M, Mosca L. Chemistry, Stability and Bioavailability of Resveratrol. Med Chem. 2014;10(3):237–245. doi:10.2174/15734064113096660053
  • Baldassarre ME, Di Mauro A, Labellarte G, et al. Resveratrol plus carboxymethyl-β-glucan in infants with common cold: a randomized double-blind trial. Heliyon. 2020;6(4):e03814. doi:10.1016/j.heliyon.2020.e03814
  • Greiller CL, Martineau AR. Modulation of the Immune Response to Respiratory Viruses by Vitamin D. Nutrients. 2015;7(6):4240–4270. doi:10.3390/nu7064240
  • Kallas M, Green F, Hewison M, White C, Kline G. Rare causes of calcitriol-mediated hypercalcemia: a case report and literature review. J Clin Endocrinol Metab. 2010;95(7):3111–3117. doi:10.1210/jc.2009-2673
  • Hewison M. Vitamin D and the intracrinology of innate immunity. Mol Cell Endocrinol. 2010;321(2):103–111. doi:10.1016/j.mce.2010.02.013
  • Meftahi GH, Jangravi Z, Sahraei H, Bahari Z. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: the contribution of “inflame-aging”. Inflamm Res. 2020;69(9):825–839. doi:10.1007/s00011-020-01372-8
  • Cantorna MT, Snyder L, Lin YD, Yang L. Vitamin D and 1,25(OH)2D Regulation of T cells. Nutrients. 2015;7(4):3011–3021. doi:10.3390/nu7043011
  • Komolmit P, Charoensuk K, Thanapirom K, et al. Correction of Vitamin D deficiency facilitated suppression of IP-10 and DPP IV levels in patients with chronic hepatitis C: a randomised double-blinded, placebo-control trial. PLoS One. 2017;12(4):1–14. doi:10.1371/journal.pone.0174608
  • Tan CW, Ho LP, Kalimuddin S, et al. Cohort study to evaluate effect of vitamin D, magnesium, and vitamin B12 in combination on severe outcome progression in older patients with coronavirus (COVID-19). Nutrition. 2020;79-80:111017. doi:10.1016/j.nut.2020.111017
  • Martens GA. Vitamin D deficiency as risk factor for severe COVID-19: a convergence of two pandemics. J med. 2020;1:435. doi:10.1101/2020.05.01.20079376
  • Grant WB, Baggerly CA, Lahore H. Reply: “Vitamin D Supplementation in Influenza and COVID-19 Infections. Comment on: evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths Nutrients 2020, 12(4),988”. Nutrients. 2020;12(6):453. doi:10.3390/nu12061620
  • Colunga Biancatelli RML, Berrill M, Marik PE. The antiviral properties of vitamin C. Expert Rev Anti Infect Ther. 2020;18(2):99–101. doi:10.1080/14787210.2020.1706483
  • Castro SM, Guerrero-Plata A, Suarez-Real G, et al. Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation. Am J Respir Crit Care Med. 2006;174(12):1361–1369. doi:10.1164/rccm.200603-319OC
  • Cheng RZ. Can early and high intravenous dose of vitamin C prevent and treat coronavirus disease 2019 (COVID-19)? Med Drug Discov. 2020;5:100028. doi:10.1016/j.medidd.2020.100028
  • Boretti A, Banik BK. Intravenous vitamin C for reduction of cytokines storm in acute respiratory distress syndrome. PharmaNutrition. 2020;12:100190. doi:10.1016/j.phanu.2020.100190
  • Jariwalla RJ, Roomi MW, Gangapurkar B, Kalinovsky T, Niedzwiecki A, Rath M. Suppression of influenza A virus nuclear antigen production and neuraminidase activity by a nutrient mixture containing ascorbic acid, green tea extract and amino acids. BioFactors. 2007;31(1):1–15. doi:10.1002/biof.5520310101
  • Hoang BX, Shaw G, Fang W, Han B. Possible application of high-dose vitamin C in the prevention and therapy of coronavirus infection. J Glob Antimicrob Resist. 2020;23:256–262. doi:10.1016/j.jgar.2020.09.025
  • Wintergerst ES, Maggini S, Hornig DH. Immune-enhancing role of Vitamin C and zinc and effect on clinical conditions. Ann Nutr Metab. 2006;50(2):85–94. doi:10.1159/000090495
  • Patel V, Dial K, Wu J, et al. Dietary Antioxidants Significantly Attenuate Hyperoxia-Induced Acute Inflammatory Lung Injury by Enhancing Macrophage Function via Reducing the Accumulation of Airway HMGB1. Int J Mol Sci. 2020;21:3. doi:10.3390/ijms21030977
  • Chen L, Hu C, Hood M, et al. A Novel Combination of Vitamin C, Curcumin and Glycyrrhizic Acid Potentially Regulates Immune and Inflammatory Response Associated with Coronavirus Infections: a Perspective from System Biology Analysis. Nutrients. 2020;12:4. doi:10.3390/nu12041193
  • Stipp M. SARS-CoV-2: micronutrient Optimization in Supporting Host Immunocompetence. Int J Clin Case Reports Rev. 2020;2(2):1–10. doi:10.31579/2690-4861/024
  • Rizzo JA, Rowan MP, Driscoll IR, Chung KK, Friedman BC. Vitamin C in Burn Resuscitation. Crit Care Clin. 2016;32(4):539–546. doi:10.1016/j.ccc.2016.06.003
  • Fowler Iii AA, Kim C, Lepler L, et al. Intravenous vitamin C as adjunctive therapy for enterovirus/rhinovirus induced acute respiratory distress syndrome. World J Crit Care Med. 2017;6(1):85–90. doi:10.5492/wjccm.v6.i1.85
  • Thomas S, Patel D, Bittel B, et al. Effect of High-Dose Zinc and Ascorbic Acid Supplementation vs Usual Care on Symptom Length and Reduction Among Ambulatory Patients With SARS-CoV-2 Infection: the COVID A to Z Randomized Clinical Trial. JAMA Netw open. 2021;4(2):e210369–e210369. doi:10.1001/jamanetworkopen.2021.0369
  • Zhang J, Rao X, Li Y, et al. Pilot trial of high-dose vitamin C in critically ill COVID-19 patients. Ann Intensive Care. 2021;11(1):5. doi:10.1186/s13613-020-00792-3
  • Fowler AA, Syed AA, Knowlson S, et al. Phase I safety trial of intravenous ascorbic acid in patients with severe sepsis. J Transl Med. 2014;12:32. doi:10.1186/1479-5876-12-32
  • Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014;2014:53. doi:10.1155/2014/186864
  • Zahedipour F, Hosseini SA, Sathyapalan T, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phyther Res. 2020;34(11):2911–2920. doi:10.1002/ptr.6738
  • Chen T-Y, Chen D-Y, Wen H-W, et al. Inhibition of Enveloped Viruses Infectivity by Curcumin. PLoS One. 2013;8(5):1–11. doi:10.1371/journal.pone.0062482
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–280.e8. doi:10.1016/j.cell.2020.02.052
  • Maurya VK, Kumar S, Prasad AK, Bhatt MLB, Saxena SK. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. VirusDisease. 2020;31(2):179–193. doi:10.1007/s13337-020-00598-8
  • Hirano T, Murakami M. COVID-19: a New Virus, but a Familiar Receptor and Cytokine Release Syndrome. Immunity. 2020;52(5):731–733. doi:10.1016/j.immuni.2020.04.003
  • Jia HP, Look DC, Shi L, et al. ACE2 Receptor Expression and Severe Acute Respiratory Syndrome Coronavirus Infection Depend on Differentiation of Human Airway Epithelia. J Virol. 2005;79(23):14614–14621. doi:10.1128/jvi.79.23.14614-14621.2005
  • Mathew D, Hsu W-L. Antiviral potential of curcumin. J Funct Foods. 2018;40:692–699. doi:10.1016/j.jff.2017.12.017
  • Ting D, Dong N, Fang L, et al. Multisite Inhibitors for Enteric Coronavirus: antiviral Cationic Carbon Dots Based on Curcumin. ACS Appl Nano Mater. 2018;1(10):5451–5459. doi:10.1021/acsanm.8b00779
  • Soni VK, Mehta A, Ratre YK, et al. Curcumin, a traditional spice component, can hold the promise against COVID-19? Eur J Pharmacol. 2020;886:173551. doi:10.1016/j.ejphar.2020.173551
  • Sordillo PP, Helson L. Curcumin suppression of cytokine release and cytokine storm. A potential therapy for patients with Ebola and other severe viral infections. Vivo (Brooklyn). 2015;29(1):1–4.
  • Iwatani S, Yamamoto N. Functional food products in Japan: a review. Food Sci Hum Wellness. 2019;8(2):96–101. doi:10.1016/j.fshw.2019.03.011
  • Regulation EC. No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. Off J Eur Union. 2007;50:3–18.
  • Hasler CM, Bloch AS, Thomson CA, Enrione E, Manning C. Position of the American Dietetic Association: functional foods. J Am Diet Assoc. 2004;104(5):814–826.
  • Bagchi D. Nutraceuticals and functional foods regulations in the United States and around the world. Toxicology. 2006;221(1):1–3. doi:10.1016/j.tox.2006.01.001
  • Henry CJ. Functional foods. Eur J Clin Nutr. 2010;64(7):657–659. doi:10.1038/ejcn.2010.101
  • Martirosyan DM, Singh J. A new definition of functional food by FFC: what makes a new definition unique? Funct Foods Heal Dis. 2015;5(6):209–223.
  • Hu N, Li Q-B, Zou S-Y. Effect of vitamin A as an adjuvant therapy for pneumonia in children: a Meta analysis. Zhongguo Dang Dai Er Ke Za Zhi. 2018;20(2):146–153. doi:10.7499/j.issn.1008-8830.2018.02.013
  • Imdad A, Mayo-Wilson E, Herzer K, Bhutta ZA. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst Rev. 2017;3(3):CD008524–CD008524. doi:10.1002/14651858.CD008524.pub3
  • Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;1:45.
  • Hemilä H, Louhiala P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst Rev. 2013;8:53.
  • Bergman P, Åu L, Björkhem-Bergman L, Lindh JD. Vitamin D and respiratory tract infections: a systematic review and meta-analysis of randomized controlled trials. PLoS One. 2013;8(6):e65835.
  • Zhou Y-F, Luo B-A, Qin -L-L. The association between vitamin D deficiency and community-acquired pneumonia: a meta-analysis of observational studies. Medicine (Baltimore). 2019;98:38.
  • Lee GY, Han SN. The role of vitamin E in immunity. Nutrients. 2018;10(11):1614.
  • Mao S, Zhang A, Huang S. Meta-analysis of Zn, Cu and Fe in the hair of Chinese children with recurrent respiratory tract infection. Scand J Clin Lab Invest. 2014;74(7):561–567. doi:10.3109/00365513.2014.921323
  • Johnstone J, Roth DE, Guyatt G, Loeb M. Zinc for the treatment of the common cold: a systematic review and meta-analysis of randomized controlled trials. Cmaj. 2012;184(10):E551–E561.
  • Hemilä H. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage. JRSM Open. 2017;8(5):2054270417694291.
  • Wu W, Li R, Li X, et al. Quercetin as an antiviral agent inhibits influenza A virus (IAV) entry. Viruses. 2016;8(1):6.
  • Li Y, Yao J, Han C, et al. Quercetin, inflammation and immunity. Nutrients. 2016;8(3):167.
  • Ali A, Banerjea AC. Curcumin inhibits HIV-1 by promoting Tat protein degradation. Sci Rep. 2016;6(1):1–9.
  • Colpitts CC, Schang LM, Rachmawati H, et al. Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut. 2014;63(7):1137–1149.
  • Kaihatsu K, Yamabe M, Ebara Y. Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules. 2018;23(10):2475.