294
Views
8
CrossRef citations to date
0
Altmetric
Original Research

Microbial Modulation of Coagulation Disorders in Venous Thromboembolism

ORCID Icon, ORCID Icon & ORCID Icon
Pages 387-400 | Published online: 30 Jul 2020

References

  • Wolberg AS, Rosendaal FR, Weitz JI, et al. Venous thrombosis. Nat Rev Dis Primers. 2015;1(1):15006. doi:10.1038/nrdp.2015.627189130
  • Suzuki N, Yoshioka N, Ohara T, et al. Risk factors for perioperative venous thromboembolism: a retrospective study in Japanese women with gynecologic diseases. Thromb J. 2010;8(1):17. doi:10.1186/1477-9560-8-1721054901
  • Liem TK, Huynh TM, Moseley SE, et al. Symptomatic perioperative venous thromboembolism is a frequent complication in patients with a history of deep vein thrombosis. J Vasc Surg. 2010;52(3):651–657. doi:10.1016/j.jvs.2010.04.02920558025
  • Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014;5(1):4–11. doi:10.4161/viru.2737224335434
  • Beristain-Covarrubias N, Perez-Toledo M, Thomas MR, Henderson IR, Watson SP, Cunningham AF. Understanding infection-induced thrombosis: lessons learned from animal models. Front Immunol. 2019;10. doi:10.3389/fimmu.2019.02569
  • Munford RS. Endotoxemia-menace, marker, or mistake? J Leukoc Biol. 2016;100(4):687–698. doi:10.1189/jlb.3RU0316-151R27418356
  • Pretorius E, Mbotwe S, Bester J, Robinson CJ, Kell DB. Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of highly substoichiometric levels of bacterial lipopolysaccharide. J R Soc Interface. 2016;13(122):20160539. doi:10.1098/rsif.2016.053927605168
  • Patrakka O, Pienimäki J, Tuomisto S, et al. Oral bacterial signatures in cerebral thrombi of patients with acute ischemic stroke treated with thrombectomy. J Am Heart Assoc. 2019;8(11). doi:10.1161/JAHA.119.012330
  • Hamzeh-Cognasse H, Damien P, Chabert A, Pozzetto B, Cognasse F, Garraud O. Platelets and infections - Complex interactions with bacteria. Front Immunol. 2015;6:1–18. doi:10.3389/fimmu.2015.0008225657648
  • Tamowicz B, Mikstacki A, Urbanek T, Zawilska K. Mechanical methods of venous thromboembolism prevention – from the guidelines to the clinical practice. Pol Arch Intern Med. 2019. doi:10.20452/pamw.4482
  • Cohen A, Agnelli G, Anderson F, et al. Venous thromboembolism (VTE) in Europe. Thromb Haemost. 2007;98(10):756–764. doi:10.1160/TH07-03-021217938798
  • Adelborg K, Sundbøll J, Sørensen HT. Arterial cardiovascular events and mortality following venous thromboembolism. Ann Transl Med. 2015;3(9):117. doi:10.3978/j.issn.2305-5839.2015.04.1126207245
  • Mazzolai L, Aboyans V, Ageno W, et al. Diagnosis and management of acute deep vein thrombosis: a joint consensus document from the European Society of Cardiology working groups of aorta and peripheral vascular diseases and pulmonary circulation and right ventricular function. Eur Heart J. 2018;39(47):4208–4218. doi:10.1093/eurheartj/ehx00328329262
  • Raskob GE, Angchaisuksiri P, Blanco AN, et al. Thrombosis: a major contributor to global disease burden: ISTH steering committee for world thrombosis day the members of the ISTH steering committee for World Thrombosis Day. Thromb Res. 2014;134(5):931–938. doi:10.1016/j.thromres.2014.08.01425312343
  • Youn YJ, Lee J. Chronic venous insufficiency and varicose veins of the lower extremities. Korean J Intern Med. 2019;34(2):269–283. doi:10.3904/kjim.2018.23030360023
  • Lejay A, Koncar I, Diener H, Vega de Ceniga M, Chakfé N. Post-operative infection of prosthetic materials or stents involving the supra-aortic trunks: a comprehensive review. Eur J Vasc Endovasc Surg. 2018;56(6):885–900. doi:10.1016/j.ejvs.2018.07.01630121172
  • Branchford BR, Carpenter SL. The role of inflammation in venous thromboembolism. Front Pediatr. 2018;6. doi:10.3389/fped.2018.00142
  • Integrative HM. The integrative human microbiome project: dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe. 2014;16(3):276–289. doi:10.1016/j.chom.2014.08.01425211071
  • Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533. doi:10.1371/journal.pbio.100253327541692
  • Lloyd-Price J, Abu-Ali G, Huttenhower C. The healthy human microbiome. Genome Med. 2016;8(1):51. doi:10.1186/s13073-016-0307-y27122046
  • Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16(7):1024–1033. doi:10.1111/cmi.1230824798552
  • Ahmad AF, Dwivedi G, O’Gara F, Caparros-Martin J, Ward NC. The gut microbiome and cardiovascular disease: current knowledge and clinical potential. Am J Physiol Heart Circ Physiol. 2019;317(5):H923–H938. doi:10.1152/ajpheart.00376.201931469291
  • Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-bacterial interactions in health and disease. Pathogens. 2019;8(2):70. doi:10.3390/pathogens8020070
  • Païssé S, Valle C, Servant F, et al. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing. Transfusion. 2016;56(5):1138–1147. doi:10.1111/trf.1347726865079
  • Li Q, Wang C, Tang C, Zhao X, He Q, Li J. Identification and characterization of blood and neutrophil-associated microbiomes in patients with severe acute pancreatitis using next-generation sequencing. Front Cell Infect Microbiol. 2018;8. doi:10.3389/fcimb.2018.00005
  • Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The healthy human blood microbiome: fact or fiction? Front Cell Infect Microbiol. 2019;9. doi:10.3389/fcimb.2019.00148
  • Qiu J, Zhou H, Jing Y, Dong C. Association between blood microbiome and type 2 diabetes mellitus: a nested case‐control study. J Clin Lab Anal. 2019;33(4):e22842. doi:10.1002/jcla.2284230714640
  • Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev. 2015;39(4):567–591. doi:10.1093/femsre/fuv01325940667
  • Nemati R, Dietz C, Anstadt EJ, et al. Deposition and hydrolysis of serine dipeptide lipids of Bacteroidetes bacteria in human arteries: relationship to atherosclerosis. J Lipid Res. 2017;58(10):1999–2007. doi:10.1194/jlr.m07779228814639
  • Rangé H, Labreuche J, Louedec L, et al. Periodontal bacteria in human carotid atherothrombosis as a potential trigger for neutrophil activation. Atherosclerosis. 2014;236(2):448–455. doi:10.1016/j.atherosclerosis.2014.07.03425173070
  • Kiouptsi K, Jäckel S, Pontarollo G, et al. The microbiota promotes arterial thrombosis in low-density lipoprotein receptor-deficient mice. mBio. 2019;10(5):e02298–19. doi:10.1128/mBio.02298-1931641089
  • Samarasekara K, Munasinghe J. Dengue shock syndrome complicated with acute liver failure and kidney injury, infective endocarditis, and deep vein thrombosis: a case report. J Med Case Rep. 2018;12(1):321. doi:10.1186/s13256-018-1862-130373645
  • Dolapsakis C, Kranidioti E, Katsila S, Samarkos M. Cavernous sinus thrombosis due to ipsilateral sphenoid sinusitis. BMJ Case Rep. 2019;12(1):e227302. doi:10.1136/bcr-2018-227302
  • Periayah MH, Halim AS, Mat Saad AZ. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int J Hematol Oncol Stem Cell Res. 2017;11(4):319–327.29340130
  • Smith SA, Travers RJ, Morrissey JH. How it all starts: initiation of the clotting cascade. Crit Rev Biochem Mol Biol. 2015;50(4):326–336. doi:10.3109/10409238.2015.105055026018600
  • Berends ETM, Kuipers A, Ravesloot MM, Urbanus RT, Rooijakkers SHM. Bacteria under stress by complement and coagulation. FEMS Microbiol Rev. 2014;38(6):1146–1171. doi:10.1111/1574-6976.1208025065463
  • Frick I-M, Björck L, Herwald H. The dual role of the contact system in bacterial infectious disease. Thromb Haemost. 2007;98(09):497–502. doi:10.1160/TH07-01-005117849037
  • Nickel KF, Renné T. Crosstalk of the plasma contact system with bacteria. Thromb Res. 2012;130:S78–S83. doi:10.1016/j.thromres.2012.08.28423026673
  • Antoniak S. The coagulation system in host defense. Res Pract Thromb Haemost. 2018;2(3):549–557. doi:10.1002/rth2.1210930046760
  • Bhattacharya S, Ploplis VA, Castellino FJ. Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination. J Biomed Biotechnol. 2012;2012:1–19. doi:10.1155/2012/48209621836813
  • Adivitiya A, Khasa YP. The evolution of recombinant thrombolytics: current status and future directions. Bioengineered. 2017;8(4):331–358. doi:10.1080/21655979.2016.122971827696935
  • Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunol Rev. 2016;274(1):330–353. doi:10.1111/imr.1249927782333
  • Peetermans M, Vanassche T, Liesenborghs L, Lijnen RH, Verhamme P. Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Crit Rev Microbiol. 2016;42(6):866–882. doi:10.3109/1040841X.2015.108021426485450
  • Rittirsch D, Flierl MA, Ward PA. Harmful molecular mechanisms in sepsis. Nat Rev Immunol. 2008;8(10):776–787. doi:10.1038/nri240218802444
  • Duran-Bedolla J, de Oca-sandoval MA, Saldaña-Navor V, Villalobos-Silva JA, Rodriguez MC, Rivas-Arancibia S. Sepsis, mitochondrial failure and multiple organ dysfunction. Clin Invest Med. 2014;37(2):58. doi:10.25011/cim.v37i2.21087
  • Paiva CN, Bozza MT. Are reactive oxygen species always detrimental to pathogens? Antioxid Redox Signal. 2014;20(6):1000–1037. doi:10.1089/ars.2013.544723992156
  • Alberdi P, Cabezas-Cruz A, Prados PE, Rayo MV, Artigas-Jerónimo S, de la Fuente J. The redox metabolic pathways function to limit Anaplasma phagocytophilum infection and multiplication while preserving fitness in tick vector cells. Sci Rep. 2019;9(1):13236. doi:10.1038/s41598-019-49766-x31520000
  • Ivanov AV, Bartosch B, Isaguliants MG. Oxidative stress in infection and consequent disease. Oxid Med Cell Longev. 2017;2017:1–3. doi:10.1155/2017/3496043
  • Ray PD, Huang B-W, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981–990. doi:10.1016/j.cellsig.2012.01.00822286106
  • Qiao J, Arthur JF, Gardiner EE, Andrews RK, Zeng L, Xu K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol. 2018;14:126–130. doi:10.1016/j.redox.2017.08.02128888895
  • Violi F, Pignatelli P. Platelet oxidative stress and thrombosis. Thromb Res. 2012;129(3):378–381. doi:10.1016/j.thromres.2011.12.00222209450
  • Liu H, Wu J, Yao J, Wang H, Li S. The role of oxidative stress in decreased acetylcholinesterase activity at the neuromuscular junction of the diaphragm during sepsis. Oxid Med Cell Longev. 2017;2017:1–6. doi:10.1155/2017/9718615
  • Wang Q-S, Zheng Y-M, Dong L, Ho Y-S, Guo Z, Wang Y-X. Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes. Free Radic Biol Med. 2007;42(5):642–653. doi:10.1016/j.freeradbiomed.2006.12.00817291988
  • Tafani M, Sansone L, Limana F, et al. The interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxid Med Cell Longev. 2016;2016:1–18. doi:10.1155/2016/3907147
  • Yang S-L, Wu C, Xiong Z-F, Fang X. Progress on hypoxia-inducible factor-3: its structure, gene regulation and biological function (Review). Mol Med Rep. 2015;12(2):2411–2416. doi:10.3892/mmr.2015.368925936862
  • Ziello JE, Jovin IS, Huang Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 2007;80(2):51–60.18160990
  • Weidemann A, Johnson RS. Biology of HIF-1α. Cell Death Differ. 2008;15(4):621–627. doi:10.1038/cdd.2008.1218259201
  • Malone PC. The aetiology of deep venous thrombosis. QJM. 2006;99(9):581–593. doi:10.1093/qjmed/hcl07016905749
  • Prchal JT. Hypoxia and thrombosis. Blood. 2018;132(4):348–349. doi:10.1182/blood-2018-06-85497630049732
  • Kempf VAJ, Lebiedziejewski M, Alitalo K, et al. Activation of hypoxia-inducible factor-1 in bacillary angiomatosis. Circulation. 2005;111(8):1054–1062. doi:10.1161/01.CIR.0000155608.07691.B715723970
  • Yeung J, Li W, Holinstat M. Platelet signaling and disease: targeted therapy for thrombosis and other related diseases. Pharmacol Rev. 2018;70(3):526–548. doi:10.1124/pr.117.01453029925522
  • Korzonek-Szlacheta I, Zubelewicz-Szkodzińska B, Gąsior M. Płytki krwi — ogniwo łączące zakrzepicę ze stanem zapalnym. Folia Cardiol. 2018;13(4):303–308. doi:10.5603/FC.2018.0068
  • Xu J, An Q, Yin W, Hu X. Platelet and immunity in transfusion medicine In: Transfusion Medicine and Scientific Developments. InTech; 2017:55. doi:10.5772/intechopen.69135
  • Kerrigan SW. Platelet interactions with bacteria in: the non-thrombotic role of platelets in health and Disease. InTech; 2015:65. doi10.5772/60531
  • Kerrigan SW, Cox D. Platelet–bacterial interactions. Cell Mol Life Sci. 2010;67(4):513–523. doi:10.1007/s00018-009-0207-z20091082
  • Kerrigan SW, Douglas I, Wray A, et al. A role for glycoprotein Ib in Streptococcus sanguis–induced platelet aggregation. Blood. 2002;100(2):509–516. doi:10.1182/blood.V100.2.50912091342
  • Byrne MF, Kerrigan SW, Corcoran PA, et al. Helicobacter pylori binds von Willebrand factor and interacts with GPIb to induce platelet aggregation. Gastroenterology. 2003;124(7):1846–1854. doi:10.1016/S0016-5085(03)00397-412806618
  • McAdow M, Missiakas DM, Schneewind O. Staphylococcus aureus secretes coagulase and von willebrand factor binding protein to modify the coagulation cascade and establish host infections. J Innate Immun. 2012;4(2):141–148. doi:10.1159/00033344722222316
  • Crosby HA, Kwiecinski J, Horswill AR. Staphylococcus aureus aggregation and coagulation mechanisms, and their function in host–pathogen interactions In: Advances in Applied Microbiology; 2016:1–41. doi:10.1016/bs.aambs.2016.07.018
  • Thomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus bloodstream infections. Annu Rev Pathol. 2016;11(1):343–364. doi:10.1146/annurev-pathol-012615-04435126925499
  • Gros A, Ollivier V, Ho-Tin-Noé B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol. 2015;5. doi:10.3389/fimmu.2014.00678
  • Rose PE, Armour JA, Williams CE, Hill FG. Verotoxin and neuraminidase induced platelet aggregating activity in plasma: their possible role in the pathogenesis of the haemolytic uraemic syndrome. J Clin Pathol. 1985;38(4):438–441. doi:10.1136/jcp.38.4.4382859303
  • Guessous F, Marcinkiewicz M, Polanowska-Grabowska R, et al. Shiga toxin 2 and lipopolysaccharide induce human microvascular endothelial cells to release chemokines and factors that stimulate platelet function. Infect Immun. 2005;73(12):8306–8316. doi:10.1128/IAI.73.12.8306-8316.200516299328
  • Surewaard BGJ, Thanabalasuriar A, Zeng Z, et al. α-Toxin induces platelet aggregation and liver injury during Staphylococcus aureus sepsis. Cell Host Microbe. 2018;24(2):271–284.e3. doi:10.1016/j.chom.2018.06.01730033122
  • Martinod K, Wagner DD. Thrombosis: tangled up in NETs. Blood. 2014;123(18):2768–2776. doi:10.1182/blood-2013-10-46364624366358
  • Konig MF, Andrade F. A critical reappraisal of neutrophil extracellular traps and NETosis mimics based on differential requirements for protein citrullination. Front Immunol. 2016;7. doi:10.3389/fimmu.2016.00461
  • Lazzaretto B, Fadeel B. Intra- and extracellular degradation of neutrophil extracellular traps by macrophages and dendritic cells. J Immunol. 2019;203(8):2276–2290. doi:10.4049/jimmunol.180015931519860
  • Scheithauer TPM, Dallinga-Thie GM, de Vos WM, Nieuwdorp M, van Raalte DH. Causality of small and large intestinal microbiota in weight regulation and insulin resistance. Mol Metab. 2016;5(9):759–770. doi:10.1016/j.molmet.2016.06.00227617199
  • Mondot S, Lepage P. The human gut microbiome and its dysfunctions through the meta-omics prism. Ann N Y Acad Sci. 2016;1372(1):9–19. doi:10.1111/nyas.1303326945826
  • Vinchi F. Thrombosis prevention. Hemasphere. 2019;3(1):e165. doi:10.1097/HS9.000000000000016531723804
  • Shivaji S. We are not alone: a case for the human microbiome in extra intestinal diseases. Gut Pathog. 2017;9(1):13. doi:10.1186/s13099-017-0163-328286571
  • Khan AA, Shrivastava A, Khurshid M. Normal to cancer microbiome transformation and its implication in cancer diagnosis. Biochim Biophys Acta Rev Cancer. 2012;1826(2):331–337. doi:10.1016/j.bbcan.2012.05.005
  • Vuong HE, Hsiao EY. Emerging roles for the gut microbiome in autism spectrum disorder. Biol Psychiatry. 2017;81(5):411–423. doi:10.1016/j.biopsych.2016.08.02427773355
  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801. doi:10.1001/jama.2016.028726903338
  • Cheng X, Zhang L, Xie NC, Xu HL, Lian YJ. Association between small-intestinal bacterial overgrowth and deep vein thrombosis in patients with spinal cord injuries. J Thromb Haemost. 2017;15(2):304–311. doi:10.1111/jth.1358327930853
  • Wigg AJ. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2001;48(2):206–211. doi:10.1136/gut.48.2.20611156641
  • Shanab AA, Scully P, Crosbie O, et al. Small intestinal bacterial overgrowth in nonalcoholic steatohepatitis: association with toll-like receptor 4 expression and plasma levels of interleukin 8. Dig Dis Sci. 2011;56(5):1524–1534. doi:10.1007/s10620-010-1447-321046243
  • Wang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell. 2018;9(5):416–431. doi:10.1007/s13238-018-0549-029725935
  • Yang K, Du C, Wang X, et al. Indoxyl sulfate induces platelet hyperactivity and contributes to chronic kidney disease–associated thrombosis in mice. Blood. 2017;129(19):2667–2679. doi:10.1182/blood-2016-10-74406028264799
  • Brown JM, Hazen SL. Microbial modulation of cardiovascular disease. Nat Rev Microbiol. 2018;16(3):171–181. doi:10.1038/nrmicro.2017.14929307889
  • Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 2005;208(15):2819–2830. doi:10.1242/jeb.0173016043587
  • Velasquez M, Ramezani A, Manal A, Raj D. Trimethylamine N-oxide: the good, the bad and the unknown. Toxins. 2016;8(11):326. doi:10.3390/toxins8110326
  • Haghikia A, Li XS, Liman TG, et al. Gut microbiota–dependent trimethylamine N -oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol. 2018;38(9):2225–2235. doi:10.1161/ATVBAHA.118.31102329976769
  • Qi J, You T, Li J, et al. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies. J Cell Mol Med. 2018;22(1):185–194. doi:10.1111/jcmm.1330728782886
  • Roncal C, Martínez-Aguilar E, Orbe J, et al. Trimethylamine-N-oxide (TMAO) predicts cardiovascular mortality in peripheral artery disease. Sci Rep. 2019;9(1):15580. doi:10.1038/s41598-019-52082-z31666590
  • Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–124. doi:10.1016/j.cell.2016.02.01126972052
  • Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–1595. doi:10.1016/j.cell.2015.11.05526687352
  • Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev. 2014. doi:10.1111/1574-6976.12075
  • Tang WHW, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–1584. doi:10.1056/NEJMoa110940023614584
  • Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–585. doi:10.1038/nm.314523563705
  • Hung S, Kuo K, Wu C, Tarng D-C. Indoxyl sulfate: a novel cardiovascular risk factor in chronic kidney disease. J Am Heart Assoc. 2017;6(2):102–110. doi:10.1161/JAHA.116.005022
  • Karbowska M, Kaminski TW, Znorko B, et al. Indoxyl sulfate promotes arterial thrombosis in rat model via increased levels of complex TF/VII, PAI-1, platelet activation as well as decreased contents of SIRT1 and SIRT3. Front Physiol. 2018;9. doi:10.3389/fphys.2018.01623
  • Dalager-Pedersen M, Søgaard M, Schønheyder HC, Nielsen H, Thomsen RW. Risk for myocardial infarction and stroke after community-acquired bacteremia. Circulation. 2014;129(13):1387–1396. doi:10.1161/CIRCULATIONAHA.113.00669924523433
  • Putot A, Chague F, Manckoundia P, Cottin Y, Zeller M. Post-infectious myocardial infarction: new insights for improved screening. J Clin Med. 2019;8(6):827. doi:10.3390/jcm8060827
  • Fugate JE, Lyons JL, Thakur KT, Smith BR, Hedley-Whyte ET, Mateen FJ. Infectious causes of stroke. Lancet Infect Dis. 2014;14(9):869–880. doi:10.1016/S1473-3099(14)70755-824881525
  • Roquer J, Cuadrado-Godia E, Giralt-Steinthauer E, et al. Previous infection and stroke: a prospective study. Cerebrovasc Dis. 2012;33(4):310–315. doi:10.1159/00033530622343923
  • Tralhão A, Póvoa P. Cardiovascular events after community-acquired pneumonia: a global perspective with systematic review and meta-analysis of observational studies. J Clin Med. 2020;9(2):414. doi:10.3390/jcm9020414
  • Beynon RP, Bahl VK, Prendergast BD. Infective endocarditis. BMJ. 2006;333(7563):334–339. doi:10.1136/bmj.333.7563.33416902214
  • Musher DM, Abers MS, Corrales-Medina VF. Acute infection and myocardial infarction. N Engl J Med. 2019;380(2):171–176. doi:10.1056/NEJMra180813730625066
  • Kastrup CJ, Boedicker JQ, Pomerantsev AP, et al. Spatial localization of bacteria controls coagulation of human blood by ‘quorum acting‘. Nat Chem Biol. 2008;4(12):742–750. doi:10.1038/nchembio.12419031531
  • Crary SE, Buchanan GR, Drake CE, Journeycake JM. Venous thrombosis and thromboembolism in children with osteomyelitis. J Pediatr. 2006;149(4):537–541. doi:10.1016/j.jpeds.2006.06.06717011328
  • Gonzalez BE, Teruya J, Mahoney DH, et al. Venous thrombosis associated with staphylococcal osteomyelitis in children. Pediatrics. 2006;117(5):1673–1679. doi:10.1542/peds.2005-200916651323
  • Lee C-Y, Lee Y-S, Tsao P-C, Jeng M-J, Soong W-J. Musculoskeletal sepsis associated with deep vein thrombosis in a child. Pediatr Neonatol. 2016;57(3):244–247. doi:10.1016/j.pedneo.2013.09.00424279976
  • Mantadakis E, Plessa E, Vouloumanou EK, Michailidis L, Chatzimichael A, Falagas ME. Deep venous thrombosis in children with musculoskeletal infections: the clinical evidence. Int J Infect Dis. 2012;16(4):e236–e243. doi:10.1016/j.ijid.2011.12.01222361432
  • Arduini A, Zammit VA, Bonomini M. Identification of trimethylamine N-oxide (TMAO)-producer phenotype is interesting, but is it helpful? Gut. 2018;2019. doi:10.1136/gutjnl-2018-318000
  • Vail GM, Xie YJ, Haney DJ, Barnes CJ. Biomarkers of thrombosis, fibrinolysis, and inflammation in patients with severe sepsis due to community-acquired pneumonia with and without Streptococcus pneumoniae. Infection. 2009;37(4):358–364. doi:10.1007/s15010-008-8128-619169631
  • Violi F, Cangemi R, Calvieri C. Pneumonia, thrombosis and vascular disease. J Thromb Haemost. 2014;12(9):1391–1400. doi:10.1111/jth.1264624954194
  • Johansson D, Shannon O, Rasmussen M. Platelet and neutrophil responses to Gram positive pathogens in patients with bacteremic infection. PLoS One. 2011;6(11):e26928. doi:10.1371/journal.pone.002692822140434
  • Andes DR, Urban AW, Acher CW, Maki DG. Septic thrombosis of the basilic, axillary, and subclavian veins caused by a peripherally inserted central venous catheter. Am J Med. 1998;105(5):446–450. doi:10.1016/S0002-9343(98)00287-39831430
  • Sato A, Nakamura I, Fujita H, et al. Peripheral venous catheter-related bloodstream infection is associated with severe complications and potential death: a retrospective observational study. BMC Infect Dis. 2017;17(1):434. doi:10.1186/s12879-017-2536-028623882
  • Denis Spelman, MBBS, FRACP, FRCPA M. Suppurative (septic) thrombophlebitis. Literature review current through. 2018 Available from: https://www.uptodate.com/contents/suppurative-septic-thrombophlebitis.
  • Cox ER, Amoroso A, Gilliam BL. Pannus attack: septic thrombophlebitis. Am J Med. 2012;125(12):1175–1177. doi:10.1016/j.amjmed.2012.08.00223062405
  • Weinberg G. Upper-extremity suppurative thrombophlebitis and septic pulmonary emboli. JAMA. 1978;240(14):1519. doi:10.1001/jama.1978.03290140061029682360
  • Xin Koh Y, Kian Chng J, Guan Tan S. A rare case of septic deep vein thrombosis in the inferior vena cava and the left iliac vein in an intravenous drug abuser. Ann Vasc Dis. 2012;5(3):389–392. doi:10.3400/avd.cr.12.0003623555542
  • Cornford CS, Mason JM, Inns F. Deep vein thromboses in users of opioid drugs: incidence, prevalence, and risk factors. Br J Gen Pract. 2011;61(593):e781–e786. doi:10.3399/bjgp11X61311522137414
  • Kwiatkowska W, Knysz B, Gąsiorowski J, Witkiewicz W. Deep vein thrombosis of the lower limbs in intravenous drug users. Postepy Higieny I Medycyny Doswiadczalnej. 2015;69:510–520. doi:10.5604/17322693.115021525983290
  • Antonova N, Zvetkova E, Ivanov I, Savov Y. Hemorheological changes and characteristic parameters derived from whole blood viscometry in chronic heroin addicts. Clin Hemorheol Microcirc. 2008;39(1–4):53–61. doi:10.3233/CH-2008-106818503110
  • Huisjes R, Bogdanova A, van Solinge WW, Schiffelers RM, Kaestner L, van Wijk R. Squeezing for life – properties of red blood cell deformability. Front Physiol. 2018;9. doi:10.3389/fphys.2018.00656
  • Galante A, DeLuca A, Pietroiusti A, et al. Effects of opiates on blood rheology. J Toxicol Clin Toxicol. 1994;32(4):411–417. doi:10.3109/155636594090110428057400