71
Views
2
CrossRef citations to date
0
Altmetric
Original Research

Class IIa HDAC Downregulation Contributes to Surgery-Induced Cognitive Impairment Through HMGB1-Mediated Inflammatory Response in the Hippocampi of Aged Mice

, , , , , , , , , , & show all
Pages 2301-2315 | Published online: 31 May 2021

References

  • Lyman M, Lloyd DG, Ji X, et al. Neuroinflammation: the role and consequences. Neurosci Res. 2014;79:1–12. doi:10.1016/j.neures.2013.10.004
  • Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD Investigators International Study of post-operative cognitive dysfunction. Lancet (London, England). 1998;351(9106):857–861.
  • Xu J, Dong H, Qian Q, et al. Astrocyte-derived CCL2 participates in surgery-induced cognitive dysfunction and neuroinflammation via evoking microglia activation. Behav Brain Res. 2017;332:145–153. doi:10.1016/j.bbr.2017.05.066
  • Schreuder L, Eggen BJ, Biber K, et al. Pathophysiological and behavioral effects of systemic inflammation in aged and diseased rodents with relevance to delirium: a systematic review. Brain Behav Immun. 2017;62:362–381. doi:10.1016/j.bbi.2017.01.010
  • Alam A, Hana Z, Jin Z, et al. Surgery, neuroinflammation and cognitive impairment. EBioMedicine. 2018;37:547–556. doi:10.1016/j.ebiom.2018.10.021
  • Li M, Chen S, Shi X, et al. Cell permeable HMGB1-binding heptamer peptide ameliorates neurovascular complications associated with thrombolytic therapy in rats with transient ischemic stroke. J Neuroinflammation. 2018;15(1):237. doi:10.1186/s12974-018-1267-5
  • Yu H, Dong R, Lu Y, et al. Short-term postoperative cognitive dysfunction and inflammatory response in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: a pilot study. Mediators Inflamm. 2017;2017:3605350. doi:10.1155/2017/3605350
  • Terrando N, Yang T, Wang X, et al. Systemic HMGB1 neutralization prevents postoperative neurocognitive dysfunction in aged rats. Front Immunol. 2016;7:441. doi:10.3389/fimmu.2016.00441
  • Kong ZH, Chen X, Hua HP, et al. The oral pretreatment of glycyrrhizin prevents surgery-induced cognitive impairment in aged mice by reducing neuroinflammation and Alzheimer’s-related pathology via HMGB1 inhibition. J Mol Neurosci. 2017;63(3–4):385–395. doi:10.1007/s12031-017-0989-7
  • Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol. 2005;5(4):331–342. doi:10.1038/nri1594
  • Lu B, Wang C, Wang M, et al. Molecular mechanism and therapeutic modulation of high mobility group box 1 release and action: an updated review. Expert Rev Clin Immunol. 2014;10(6):713–727. doi:10.1586/1744666X.2014.909730
  • Nan K, Han Y, Fang Q, et al. HMGB1 gene silencing inhibits neuroinflammation via down-regulation of NF-kappaB signaling in primary hippocampal neurons induced by Abeta25-35. Int Immunopharmacol. 2018;67:294–301. doi:10.1016/j.intimp.2018.12.027
  • Matsuura W, Harada S, Liu K, et al. Evidence of a role for spinal HMGB1 in ischemic stress-induced mechanical allodynia in mice. Brain Res. 2018;1687:1–10. doi:10.1016/j.brainres.2018.02.026
  • Wu Y, Hou F, Wang X, et al. Aberrant expression of histone Deacetylases 4 in cognitive disorders: molecular mechanisms and a potential target. Front Mol Neurosci. 2016;9:114. doi:10.3389/fnmol.2016.00114
  • Lin TB, Hsieh MC, Lai CY, et al. Modulation of nerve injury-induced HDAC4 cytoplasmic retention contributes to neuropathic pain in rats. Anesthesiology. 2015;123(1):199–212. doi:10.1097/ALN.0000000000000663
  • Evankovich J, Cho SW, Zhang R, et al. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem. 2010;285(51):39888–39897.
  • He M, Zhang B, Wei X, et al. HDAC4/5-HMGB1 signalling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury. J Cell Mol Med. 2013;17(4):531–542. doi:10.1111/jcmm.12040
  • Wei S, Gao Y, Dai X, et al. SIRT1-mediated HMGB1 deacetylation suppresses sepsis-associated acute kidney injury. Am J Physiol Renal Physiol. 2019;316(1):F20–f31. doi:10.1152/ajprenal.00119.2018
  • Kim MS, Akhtar MW, Adachi M, et al. An essential role for histone deacetylase 4 in synaptic plasticity and memory formation. J Neurosci. 2012;32(32):10879–10886. doi:10.1523/JNEUROSCI.2089-12.2012
  • Agis-Balboa RC, Pavelka Z, Kerimoglu C, et al. Loss of HDAC5 impairs memory function: implications for Alzheimer’s disease. J Alzheimer’s Dis. 2013;33(1):35–44. doi:10.3233/JAD-2012-121009
  • Bonaldi T, Langst G, Strohner R, et al. The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding. EMBO J. 2002;21(24):6865–6873. doi:10.1093/emboj/cdf692
  • Bianchi ME, Crippa MP, Manfredi AA, et al. High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol Rev. 2017;280(1):74–82. doi:10.1111/imr.12601
  • He HJ, Wang Y, Le Y, et al. Surgery upregulates high mobility group box-1 and disrupts the blood-brain barrier causing cognitive dysfunction in aged rats. CNS Neurosci Ther. 2012;18(12):994–1002. doi:10.1111/cns.12018
  • Chi JH, Seo GS, Cheon JH, et al. Isoliquiritigenin inhibits TNF-alpha-induced release of high-mobility group box 1 through activation of HDAC in human intestinal epithelial HT-29 cells. Eur J Pharmacol. 2017;796:101–109. doi:10.1016/j.ejphar.2016.12.026
  • Zou JY, Crews FT. Release of neuronal HMGB1 by ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One. 2014;9(2):e87915. doi:10.1371/journal.pone.0087915
  • Ren M, Leng Y, Jeong M, et al. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction. J Neurochem. 2004;89(6):1358–1367. doi:10.1111/j.1471-4159.2004.02406.x
  • Xiao D, Zhang D, Xiang D, et al. Effects of fentanyl, midazolam and their combination on immune function and mortality in mice with sepsis. Exp Ther Med. 2015;9(4):1494–1500. doi:10.3892/etm.2015.2227
  • Ni P, Dong H, Wang Y, et al. IL-17A contributes to perioperative neurocognitive disorders through blood-brain barrier disruption in aged mice. J Neuroinflammation. 2018;15(1):332. doi:10.1186/s12974-018-1374-3
  • Zhang S, Dong H, Zhang X, et al. Cerebral mast cells contribute to postoperative cognitive dysfunction by promoting blood brain barrier disruption. Behav Brain Res. 2016;298(Pt B):158–166. doi:10.1016/j.bbr.2015.11.003
  • Gutierrez EG, Banks WA, Kastin AJ. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J Neuroimmunol. 1993;47(2):169–176. doi:10.1016/0165-5728(93)90027-V
  • McKinsey TA, Zhang CL, Olson EN. Identification of a signal-responsive nuclear export sequence in class II histone deacetylases. Mol Cell Biol. 2001;21(18):6312–6321. doi:10.1128/MCB.21.18.6312-6321.2001
  • Andersson U, Yang H, Extracellular HH. HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin Ther Targets. 2018;22(3):263–277. doi:10.1080/14728222.2018.1439924
  • Aucott H, Lundberg J, Salo H, et al. Neuroinflammation in response to intracerebral injections of different HMGB1 redox isoforms. J Innate Immun. 2018;10(3):215–227. doi:10.1159/000487056
  • Tang Y, Zhao X, Antoine D, et al. Regulation of posttranslational modifications of HMGB1 during immune responses. Antioxid Redox Signal. 2016;24(12):620–634. doi:10.1089/ars.2015.6409
  • Zhang Y, Karki R, Igwe OJ. Toll-like receptor 4 signaling: a common pathway for interactions between prooxidants and extracellular disulfide high mobility group box 1 (HMGB1) protein-coupled activation. Biochem Pharmacol. 2015;98(1):132–143. doi:10.1016/j.bcp.2015.08.109
  • Rahimifard M, Maqbool F, Moeini-Nodeh S, et al. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 2017;36:11–19. doi:10.1016/j.arr.2017.02.004
  • Andersson U, Yang H, Harris H High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol. 2018;38:40–48.
  • Wuri G, Wang DX, Zhou Y, et al. Effects of surgical stress on long-term memory function in mice of different ages. Acta Anaesthesiol Scand. 2011;55(4):474–485. doi:10.1111/j.1399-6576.2011.02402.x
  • Cevenini E, Caruso C, Candore G, et al. Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Current Pharm Design. 2010;16(6):609–618.
  • Barrientos RM, Kitt MM, Watkins LR, et al. Neuroinflammation in the normal aging hippocampus. Neuroscience. 2015;309:84–99. doi:10.1016/j.neuroscience.2015.03.007
  • Czyż-Szypenbejl K, Mędrzycka-Dąbrowska W, Kwiecień-Jaguś K, et al. The occurrence of Postoperative Cognitive Dysfunction (POCD) - systematic review. Psychiatr Pol. 2019;53(1):145–160. doi:10.12740/PP/90648
  • Needham MJ, Webb CE, Bryden DC. Postoperative cognitive dysfunction and dementia: what we need to know and do. Br J Anaesth. 2017;119(suppl_1):i115–i125. doi:10.1093/bja/aex354
  • Genazzani AR, Pluchino N, Luisi S, et al. Estrogen, cognition and female ageing. Hum Reprod Update. 2007;13(2):175–187. doi:10.1093/humupd/dml042
  • Trazzi S, Fuchs C, Viggiano R, et al. HDAC4: a key factor underlying brain developmental alterations in CDKL5 disorder. Hum Mol Genet. 2016;25(18):3887–3907. doi:10.1093/hmg/ddw231
  • Evankovich J, Cho SW, Zhang R, et al. High mobility group box 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity. J Biol Chem. 2010;285(51):39888–39897.
  • Wu Y, Dou J, Wan X, et al. Histone deacetylase inhibitor MS-275 alleviates postoperative cognitive dysfunction in rats by inhibiting hippocampal neuroinflammation. Neuroscience. 2019;417:70–80. doi:10.1016/j.neuroscience.2019.08.020