64
Views
0
CrossRef citations to date
0
Altmetric
Original Research

GARP and GARP-Treated tDC Prevented the Formation of Atherosclerotic Plaques in ApoE−/- Mice

ORCID Icon, , , , , , , , , , , , , ORCID Icon, & show all
Pages 3465-3479 | Published online: 22 Jul 2021

References

  • Luo J, Wang X, Jiang X, et al. Rutaecarpine derivative R3 attenuates atherosclerosis via inhibiting NLRP3 inflammasome-related inflammation and modulating cholesterol transport. FASEB J. 2020;34(1):1398–1411. doi:10.1096/fj.201900903RRR
  • Narula J, Arbustini E. Inflammation, superadded inflammation, and out-of-proportion inflammation in atherosclerosis. JAMA Cardiol. 2018;3(10):912–914. doi:10.1001/jamacardio.2018.2760
  • Ait-Oufella H, Libby P, Tedgui A. Antibody-based immunotherapy targeting cytokines and atherothrombotic cardiovascular diseases. Arch Cardiovasc Dis. 2020;113(1):5–8. doi:10.1016/j.acvd.2019.11.001
  • Hasib L, Lundberg AK, Zachrisson H, Ernerudh J, Jonasson L. Functional and homeostatic defects of regulatory T cells in patients with coronary artery disease. J Intern Med. 2016;279(1):63–77. doi:10.1111/joim.12398
  • Mor A, Planer D, Luboshits G, et al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27(4):893–900. doi:10.1161/01.ATV.0000259365.31469.89
  • Zhong Y, Wang X, Ji Q, et al. CD4+LAP + and CD4 +CD25 +Foxp3 + regulatory T cells induced by nasal oxidized low-density lipoprotein suppress effector T cells response and attenuate atherosclerosis in ApoE-/- mice. J Clin Immunol. 2012;32(5):1104–1117. doi:10.1007/s10875-012-9699-7
  • Shevach EM. Garp as a therapeutic target for modulation of T regulatory cell function. Expert Opin Ther Targets. 2017;21(2):191–200. doi:10.1080/14728222.2017.1275568
  • Sun L, Jin H, Li H. GARP: a surface molecule of regulatory T cells that is involved in the regulatory function and TGF-β releasing. Oncotarget. 2016;7(27):42826–42836. doi:10.18632/oncotarget.8753
  • Probst-Kepper M, Balling R, Buer J. FOXP3: required but not sufficient. the role of GARP (LRRC32) as a safeguard of the regulatory phenotype. Curr Mol Med. 2010;10(6):533–539.
  • Wang R, Kozhaya L, Mercer F, Khaitan A, Fujii H, Unutmaz D. Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A. 2009;106(32):13439–13444. doi:10.1073/pnas.0901965106
  • Probst-Kepper M, Geffers R, Kröger A, et al. GARP: a key receptor controlling FOXP3 in human regulatory T cells. J Cell Mol Med. 2009;13(9b):3343–3357. doi:10.1111/j.1582-4934.2009.00782.x
  • Zhao X, Liu Y, Zhong Y, et al. Atorvastatin improves inflammatory response in atherosclerosis by upregulating the expression of GARP. Mediators Inflamm. 2015;2015:841472. doi:10.1155/2015/841472
  • Boks MA, Kager-Groenland JR, van Ham SM, Ten Brinke A. IL-10/IFNγ co-expressing CD4(+) T cells induced by IL-10 DC display a regulatory gene profile and downmodulate T cell responses. Clin Immunol. 2016;162:91–99. doi:10.1016/j.clim.2015.11.011
  • Zhu R, Sun H, Yu K, et al. Interleukin-37 and dendritic cells treated with interleukin-37 plus troponin i ameliorate cardiac remodeling after myocardial infarction. J Am Heart Assoc. 2016;5(12):12. doi:10.1161/JAHA.116.004406
  • Takeda M, Yamashita T, Sasaki N, et al. Oral administration of an active form of vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions. Arterioscler Thromb Vasc Biol. 2010;30(12):2495–2503. doi:10.1161/ATVBAHA.110.215459
  • Metelli A, Salem M, Wallace CH, et al. Immunoregulatory functions and the therapeutic implications of GARP-TGF-β in inflammation and cancer. J Hematol Oncol. 2018;11(1):24. doi:10.1186/s13045-018-0570-z
  • Fridrich S, Hahn SA, Linzmaier M, et al. How soluble GARP enhances TGFβ activation. PLoS One. 2016;11(4):e0153290. doi:10.1371/journal.pone.0153290
  • Pillai S. The (inner) world according to GARP: genetic susceptibility and regulatory T cells. Sci Immunol. 2020;5(50):eabe0976. doi:10.1126/sciimmunol.abe0976
  • Wang R, Nascimento BR, Neuenschwander FC. Atherosclerosis and inflammation: still a long way to go. Arq Bras Cardiol. 2020;114(4):699–700. doi:10.36660/abc.20200219
  • Gowdak LHW. Atherosclerosis, inflammation, and genetics - and you thought it was just LDL-cholesterol. Arq Bras Cardiol. 2020;114(2):273–274.
  • Sharma M, Schlegel MP, Afonso MS, et al. Regulatory T cells license macrophage pro-resolving functions during atherosclerosis regression. Circ Res. 2020;127(3):335–353. doi:10.1161/CIRCRESAHA.119.316461
  • Li H, Ding Y, Yi G, Zeng Q, Yang W. Establishment of nasal tolerance to heat shock protein-60 alleviates atherosclerosis by inducing TGF-β-dependent regulatory T cells. J Huazhong Univ Sci Technol Med Sci. 2012;32(1):24–30. doi:10.1007/s11596-012-0004-z
  • Stockis J, Dedobbeleer O, Lucas S. Role of GARP in the activation of latent TGF-β1. Mol Biosyst. 2017;13(10):1925–1935. doi:10.1039/C7MB00251C
  • Battaglia M, Roncarolo MG. The Tregs’ world according to GARP. Eur J Immunol. 2009;39(12):3296–3300. doi:10.1002/eji.200940117
  • Stockis J, Colau D, Coulie PG, Lucas S. Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. Eur J Immunol. 2009;39(12):3315–3322. doi:10.1002/eji.200939684
  • Liénart S, Merceron R, Vanderaa C, et al. Structural basis of latent TGF-β1 presentation and activation by GARP on human regulatory T cells. Science. 2018;362(6417):952–956. doi:10.1126/science.aau2909
  • Feinberg MW, Jain MK. Role of transforming growth factor-beta1/Smads in regulating vascular inflammation and atherogenesis. Panminerva Med. 2005;47(3):169–186.
  • Tracy RP, Doyle MF, Olson NC, et al. T-helper type 1 bias in healthy people is associated with cytomegalovirus serology and atherosclerosis: the Multi-Ethnic Study of atherosclerosis. J Am Heart Assoc. 2013;2(3):e000117. doi:10.1161/JAHA.113.000117
  • Silveira A, McLeod O, Strawbridge RJ, et al. Plasma IL-5 concentration and subclinical carotid atherosclerosis. Atherosclerosis. 2015;239(1):125–130. doi:10.1016/j.atherosclerosis.2014.12.046
  • Binder CJ, Hartvigsen K, Chang MK, et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J Clin Invest. 2004;114(3):427–437. doi:10.1172/JCI200420479
  • King VL, Szilvassy SJ, Daugherty A. Interleukin-4 deficiency decreases atherosclerotic lesion formation in a site-specific manner in female LDL receptor-/- mice. Arterioscler Thromb Vasc Biol. 2002;22(3):456–461. doi:10.1161/hq0302.104905
  • Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Dendritic cells: a double-edge sword in atherosclerotic inflammation. Curr Pharm Des. 2015;21(9):1118–1123. doi:10.2174/1381612820666141013162528
  • Hermansson A, Johansson DK, Ketelhuth DFJ, Andersson J, Zhou X, Hansson GK. Immunotherapy with tolerogenic apolipoprotein B-100-loaded dendritic cells attenuates atherosclerosis in hypercholesterolemic mice. Circulation. 2011;123(10):1083–1091. doi:10.1161/CIRCULATIONAHA.110.973222
  • Frodermann V, van Puijvelde GH, Wierts L, et al. Oxidized low-density lipoprotein-induced apoptotic dendritic cells as a novel therapy for atherosclerosis. J Immunol. 2015;194(5):2208–2218. doi:10.4049/jimmunol.1401843
  • Mellor AL, Lemos H, Huang L. Indoleamine 2,3-dioxygenase and tolerance: where are we now? Front Immunol. 2017;8:1360. doi:10.3389/fimmu.2017.01360
  • Usui F, Kimura H, Ohshiro T, et al. Interleukin-17 deficiency reduced vascular inflammation and development of atherosclerosis in Western diet-induced apoE-deficient mice. Biochem Biophys Res Commun. 2012;420(1):72–77. doi:10.1016/j.bbrc.2012.02.117
  • Lu X. The impact of IL-17 in atherosclerosis. Curr Med Chem. 2017;24(21):2345–2358. doi:10.2174/0929867324666170419150614