121
Views
17
CrossRef citations to date
0
Altmetric
Original Research

Melatonin Ameliorates Axonal Hypomyelination of Periventricular White Matter by Transforming A1 to A2 Astrocyte via JAK2/STAT3 Pathway in Septic Neonatal Rats

, , , , , , ORCID Icon & show all
Pages 5919-5937 | Published online: 12 Nov 2021

References

  • Jung E, Romero R, Yeo L, et al. The fetal inflammatory response syndrome: the origins of a concept, pathophysiology, diagnosis, and obstetrical implications. Semin Fetal Neonatal Med. 2020;25:101146. doi:10.1016/j.siny.2020.101146
  • Ahlin K, Himmelmann K, Hagberg G, et al. Cerebral palsy and perinatal infection in children born at term. Obstet Gynecol. 2013;122(1):41–49. doi:10.1097/AOG.0b013e318297f37f
  • Ferreira RC, Mello RR, Silva KS. Neonatal sepsis as a risk factor for neurodevelopmental changes in preterm infants with very low birth weight. J Pediatr. 2014;90(3):293–299. doi:10.1016/j.jped.2013.09.006
  • Mwaniki MK, Atieno M, Lawn JE, et al. Long-term neurodevelopmental outcomes after intrauterine and neonatal insults: a systematic review. Lancet. 2012;379(9814):445–452. doi:10.1016/s0140-6736(11)61577-8
  • Hofer N, Müller W, Resch B. White matter damage and neonatal sepsis. Acta paediatrica. 2011;100:e1; author reply e1–2. doi:10.1111/j.1651-2227.2011.02217.x
  • Zaghloul N, Ahmed M. Pathophysiology of periventricular leukomalacia: what we learned from animal models. Neural Regen Res. 2017;12:1795–1796. doi:10.4103/1673-5374.219034
  • Han Q, Lin Q, Huang P, et al. Microglia-derived IL-1β contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation. 2017;14(1):52. doi:10.1186/s12974-017-0805-x
  • Xie D, Shen F, He S, et al. IL-1β induces hypomyelination in the periventricular white matter through inhibition of oligodendrocyte progenitor cell maturation via FYN/MEK/ERK signaling pathway in septic neonatal rats. Glia. 2016;64(4):583–602. doi:10.1002/glia.22950
  • Huang P, Zhou Q, Lin Q, et al. Complement C3a induces axonal hypomyelination in the periventricular white matter through activation of WNT/β-catenin signal pathway in septic neonatal rats experimentally induced by lipopolysaccharide. Brain Pathol. 2020;30(3):495–514. doi:10.1111/bpa.12798
  • Jeffries AM, Marriott I. Cytosolic DNA sensors and CNS responses to viral pathogens. Front Cell Infect Microbiol. 2020;10:576263. doi:10.3389/fcimb.2020.576263
  • Rothhammer V, Borucki DM, Tjon EC, et al. Microglial control of astrocytes in response to microbial metabolites. Nature. 2018;557(7707):724–728. doi:10.1038/s41586-018-0119-x
  • Kirkley KS, Popichak KA, Afzali MF, et al. Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation. 2017;14(1):99. doi:10.1186/s12974-017-0871-0
  • Liddelow SA, Guttenplan KA, Larke LEC, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–487. doi:10.1038/nature21029
  • Liddelow SA, Barres BA. Reactive astrocytes: production, function, and therapeutic potential. Immunity. 2017;46(6):957–967. doi:10.1016/j.immuni.2017.06.006
  • Shulyatnikova T, Verkhratsky A. Astroglia in sepsis associated encephalopathy. Neurochem Res. 2020;45(1):83–99. doi:10.1007/s11064-019-02743-2
  • Miyamoto N, Magami S, Inaba T, et al. The effects of A1/A2 astrocytes on oligodendrocyte linage cells against white matter injury under prolonged cerebral hypoperfusion. Glia. 2020;68(9):1910–1924. doi:10.1002/glia.23814
  • Zou L-H, Shi Y-J, He H, et al. Effects of FGF2/FGFR1 pathway on expression of A1 astrocytes after infrasound exposure. Front Neurosci. 2019;13:429. doi:10.3389/fnins.2019.00429
  • Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35. doi:10.1007/s00401-009-0619-8
  • Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci. 2015;18(7):942–952. doi:10.1038/nn.4043
  • Allen NJ, Eroglu C. Cell biology of astrocyte-synapse interactions. Neuron. 2017;96(3):697–708. doi:10.1016/j.neuron.2017.09.056
  • Cregg JM, DePaul MA, Filous AR, et al. Functional regeneration beyond the glial scar. Exp Neurol. 2014;253:197–207. doi:10.1016/j.expneurol.2013.12.024
  • Fujita A, Yamaguchi H, Yamasaki R, et al. Connexin 30 deficiency attenuates A2 astrocyte responses and induces severe neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride Parkinson’s disease animal model. J Neuroinflammation. 2018;15:227. doi:10.1186/s12974-018-1251-0
  • Cardinali DP, Furio AM, Brusco LI. Clinical aspects of melatonin intervention in Alzheimer’s disease progression. Curr Neuropharmacol. 2010;8:218–227. doi:10.2174/157015910792246209
  • Belaid H, Adrien J, Karachi C, et al. Effect of melatonin on sleep disorders in a monkey model of Parkinson’s disease. Sleep Med. 2015;16(10):1245–1251. doi:10.1016/j.sleep.2015.06.018
  • Wang X, Sirianni A, Pei Z, et al. The melatonin MT1 receptor axis modulates mutant huntingtin-mediated toxicity. J Neurosci. 2011;31(41):14496–14507. doi:10.1523/jneurosci.3059-11.2011
  • Zhang Y, Cook A, Kim J, et al. Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2013;55:26–35. doi:10.1016/j.nbd.2013.03.008
  • Jacob S, Poeggeler B, Weishaupt JH, et al. Melatonin as a candidate compound for neuroprotection in amyotrophic lateral sclerosis (ALS): high tolerability of daily oral melatonin administration in ALS patients. J Pineal Res. 2002;33(3):186–187. doi:10.1034/j.1600-079x.2002.02943.x
  • López-González A, Álvarez-sánchez N, Lardone PJ, et al. Melatonin treatment improves primary progressive multiple sclerosis: a case report. J Pineal Res. 2015;58(2):173–177. doi:10.1111/jpi.12203
  • Dubocovich ML, Markowska M. Functional MT1 and MT2 melatonin receptors in mammals. Endocrine. 2005;27(2):101–110. doi:10.1385/endo:27:2:101
  • Cecon E, Liu L, Jockers R. Melatonin receptor structures shed new light on melatonin research. J Pineal Res. 2019;67(4):e12606. doi:10.1111/jpi.12606
  • Jockers R, Delagrange P, Dubocovich ML, et al. Update on melatonin receptors: IUPHAR review 20. Br J Pharmacol. 2016;173(18):2702–2725. doi:10.1111/bph.13536
  • Ionov M, Burchell V, Klajnert B, et al. Mechanism of neuroprotection of melatonin against beta-amyloid neurotoxicity. Neuroscience. 2011;180:229–237. doi:10.1016/j.neuroscience.2011.02.045
  • Ali T, Badshah H, Kim TH, et al. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model. J Pineal Res. 2015;58(1):71–85. doi:10.1111/jpi.12194
  • Sinha B, Wu Q, Li W, et al. Protection of melatonin in experimental models of newborn hypoxic-ischemic brain injury through MT1 receptor. J Pineal Res. 2018;64(1):e12443. doi:10.1111/jpi.12443
  • Lin Q, Shen F, Zhou Q, et al. Interleukin-1β disturbs the proliferation and differentiation of neural precursor cells in the hippocampus via activation of notch signaling in postnatal rats exposed to lipopolysaccharide. ACS Chem Neurosci. 2019;10(5):2560–2575. doi:10.1021/acschemneuro.9b00051
  • Khazipov R, Zaynutdinova D, Ogievetsky E, et al. Atlas of the postnatal rat brain in stereotaxic coordinates. Front Neuroanat. 2015;9:161. doi:10.3389/fnana.2015.00161
  • Alshaikh B, Yusuf K, Sauve R. Neurodevelopmental outcomes of very low birth weight infants with neonatal sepsis: systematic review and meta-analysis. J Perinatol. 2013;33(7):558–564. doi:10.1038/jp.2012.167
  • Liddelow SA, Guttenplan KA, Barres BA. What do reactive astrocytes (really) do? Glia. 2019;67:E33–E33.
  • Hinkle JT, Dawson VL, Dawson TM. The A1 astrocyte paradigm: new avenues for pharmacological intervention in neurodegeneration. Mov Disorders. 2019;34(7):959–969. doi:10.1002/mds.27718
  • Yun SP, Kam T-I, Panicker N, et al. Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med. 2018;24(7):931–938. doi:10.1038/s41591-018-0051-5
  • Zhang H-Y, Wang Y, He Y, et al. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J Neuroinflammation. 2020;17(1):200. doi:10.1186/s12974-020-01871-9
  • Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement. 2016;12:719–732. doi:10.1016/j.jalz.2016.02.010
  • Subhramanyam CS, Wang C, Hu Q, et al. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol. 2019;94:112–120. doi:10.1016/j.semcdb.2019.05.004
  • Simon DW, McGeachy MJ, Bayır H, et al. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol. 2017;13(3):171–191. doi:10.1038/nrneurol.2017.13
  • Beers DR, Appel SH. Immune dysregulation in amyotrophic lateral sclerosis: mechanisms and emerging therapies. Lancet Neurol. 2019;18(2):211–220. doi:10.1016/s1474-4422(18)30394-6
  • Coppolino GT, Marangon D, Negri C, et al. Differential local tissue permissiveness influences the final fate of GPR17-expressing oligodendrocyte precursors in two distinct models of demyelination. Glia. 2018;66(5):1118–1130. doi:10.1002/glia.23305
  • Vieira MS, Santos AK, Vasconcellos R, et al. Neural stem cell differentiation into mature neurons: mechanisms of regulation and biotechnological applications. Biotechnol Adv. 2018;36:1946–1970. doi:10.1016/j.biotechadv.2018.08.002
  • Olivier P, Fontaine RH, Loron G, et al. Melatonin promotes oligodendroglial maturation of injured white matter in neonatal rats. PLoS One 2009;4(9):e7128. doi:10.1523/JNEUROSCI.3059-11.2011
  • Paulose JK, Peters JL, Karaganis SP, et al. Pineal melatonin acts as a circadian zeitgeber and growth factor in chick astrocytes. J Pineal Res. 2009;46:286–294. doi:10.1111/j.1600-079X.2008.00659.x
  • Xiang J, Zhu W, Yang F, et al. Melatonin-induced ApoE expression in mouse astrocytes protects endothelial cells from OGD-R induced injuries. Transl Psychiatry. 2020;10:181. doi:10.1038/s41398-020-00864-9
  • Hiba T, Yamada M, Aiso S. Targeting the JAK2/STAT3 axis in Alzheimer’s disease. Expert Opin Ther Targets. 2009;13:1155–1167. doi:10.1517/14728220903213426
  • Yang Y, Duan W, Jin Z, et al. JAK2/STAT3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J Pineal Res. 2013;55(3):275–286. doi:10.1111/jpi.12070
  • Chiba T, Yamada M, Sasabe J, et al. Amyloid-beta causes memory impairment by disturbing the JAK2/STAT3 axis in hippocampal neurons. Mol Psychiatry. 2009;14:206–222. doi:10.1038/mp.2008.105
  • Sarafian TA, Montes C, Imura T, et al. Disruption of astrocyte STAT3 signaling decreases mitochondrial function and increases oxidative stress in vitro. PLoS One. 2010;5:e9532. doi:10.1371/journal.pone.0009532
  • Su Y, Chen Z, Du H, et al. Silencing miR-21 induces polarization of astrocytes to the A2 phenotype and improves the formation of synapses by targeting glypican 6 via the signal transducer and activator of transcription-3 pathway after acute ischemic spinal cord injury. FASEB J. 2019;33:10859–10871. doi:10.1096/fj.201900743R
  • Li T, Chen X, Zhang C, et al. An update on reactive astrocytes in chronic pain. J Neuroinflammation. 2019;16(1):140. doi:10.1186/s12974-019-1524-2
  • Butzkueven H, Zhang JG, Soilu-Hanninen M, et al. LIF receptor signaling limits immune-mediated demyelination by enhancing oligodendrocyte survival. Nat Med. 2002;8:613–619. doi:10.1038/nm0602-613
  • Kerr BJ, Patterson PH. Leukemia inhibitory factor promotes oligodendrocyte survival after spinal cord injury. Glia. 2005;51(1):73–79. doi:10.1002/glia.20177
  • Laterza C, Merlini A, De Feo D, et al. iPSC-derived neural precursors exert a neuroprotective role in immune-mediated demyelination via the secretion of LIF. Nat Commun. 2013;4(1):2597. doi:10.1038/ncomms3597
  • Azim K, Raineteau O, Butt AM. Intraventricular injection of FGF-2 promotes generation of oligodendrocyte-lineage cells in the postnatal and adult forebrain. Glia. 2012;60(12):1977–1990. doi:10.1002/glia.22413