416
Views
7
CrossRef citations to date
0
Altmetric
Review

Pharmacogenetics of Pediatric Asthma: Current Perspectives

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 89-103 | Published online: 18 Mar 2020

References

  • Global Asthma Network. The Global Asthma Report 2018. Auckland, New Zealand; 2018.
  • Global Inititative for Asthma. Global Strategy for Asthma Management and Prevention; 2019.
  • Asher I, Pearce N. Global burden of asthma among children. Int J Tuberc Lung Dis. 2014;18(11):1269–1278. doi:10.5588/ijtld.14.017025299857
  • Mallol J, Crane J, von Mutius E, Odhiambo J, Keil U, Stewart A. The international study of asthma and allergies in childhood (ISAAC) Phase three: a global synthesis. Allergol Immunopathol (Madr). 2013;41(2):73–85. doi:10.1016/j.aller.2012.03.00122771150
  • Royal College of Physicians. Why Asthma Still Kills: The National Review of Asthma Deaths (NRAD); 2014.
  • Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716–725. doi:10.1038/nm.267822561835
  • Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372(9643):1107–1119. doi:10.1016/S0140-6736(08)61452-X18805339
  • Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;7:246. doi:10.3389/fped.2019.0024631275909
  • Park H-W, Tantisira KG, Weiss ST. Pharmacogenomics in asthma therapy: where are we and where do we go? Annu Rev Pharmacol Toxicol. 2015;55(1):129–147. doi:10.1146/annurev-pharmtox-010814-12454325292431
  • Hardy J, Singleton A. Genomewide association studies and human disease. N Engl J Med. 2009;360(17):1759–1768. doi:10.1056/NEJMra080870019369657
  • Kwon JM, Goate AM. The candidate gene approach. Alcohol Res Heal. 2000;24(3):164–168.
  • Campbell CD, Mohajeri K, Malig M, et al. Whole-genome sequencing of individuals from a founder population identifies candidate genes for asthma. PLoS One. 2014;9(8):e104396. doi:10.1371/journal.pone.010439625116239
  • Keskin O, Farzan N, Birben E, et al. Genetic associations of the response to inhaled corticosteroids in asthma: a systematic review. Clin Transl Allergy. 2019;9:2. doi:10.1186/s13601-018-0239-230647901
  • Hernandez-Pacheco N, Pino-Yanes M, Flores C. Genomic predictors of asthma phenotypes and treatment response. Front Pediatr. 2019;7:6. doi:10.3389/fped.2019.0000630805318
  • Slob EMA, Vijverberg SJH, Palmer CNA, et al. Pharmacogenetics of inhaled long-acting beta2-agonists in asthma: a systematic review. Pediatr Allergy Immunol. 2018;29(7):705–714. doi:10.1111/pai.1295629992699
  • Herrera-Luis E, Hernandez-Pacheco N, Vijverberg SJ, Flores C, Pino-Yanes M. Role of genomics in asthma exacerbations. Curr Opin Pulm Med. 2019;25(1):101–112. doi:10.1097/MCP.000000000000053330334825
  • Farzan N, Vijverberg SJ, Kabesch M, Sterk PJ, Maitland-van der Zee AH. The use of pharmacogenomics, epigenomics, and transcriptomics to improve childhood asthma management: where do we stand? Pediatr Pulmonol. 2018;53(6):836–845. doi:10.1002/ppul.v53.629493882
  • García-Menaya JM, Cordobés-Durán C, García-Martín E, Agúndez JAG. Pharmacogenetic factors affecting asthma treatment response. potential implications for drug therapy. Front Pharmacol. 2019;10:520. doi:10.3389/fphar.2019.0052031178722
  • Johnson M. Beta2-adrenoceptors: mechanisms of action of beta2-agonists. Paediatr Respir Rev. 2001;2(1):57–62. doi:10.1053/prrv.2000.010216263481
  • Drake KA, Torgerson DG, Gignoux CR, et al. A genome-wide association study of bronchodilator response in Latinos implicates rare variants. J Allergy Clin Immunol. 2014;133(2):370–378. doi:10.1016/j.jaci.2013.06.04323992748
  • Duan QL, Lasky-Su J, Himes BE, et al. A genome-wide association study of bronchodilator response in asthmatics. Pharmacogenomics J. 2014;14(1):41–47. doi:10.1038/tpj.2013.523508266
  • Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–968. doi:10.1183/09031936.05.0003520516264058
  • Litonjua AA, Gong L, Duan QL, et al. Very important pharmacogene summary ADRB2. Pharmacogenet Genomics. 2010;20(1):64–69. doi:10.1097/FPC.0b013e328333dae619927042
  • Scaparrotta A, Franzago M, Marcovecchio ML, et al. Role of THRB, ARG1, and ADRB2 genetic variants on bronchodilators response in asthmatic children. J Aerosol Med Pulm Drug Deliv. 2019;32(3):164–173. doi:10.1089/jamp.2018.149330855197
  • Jovicic N, Babic T, Dragicevic S, Nestorovic B, Nikolic A. ADRB2 gene polymorphisms and salbutamol responsiveness in Serbian children with asthma. Balk J Med Genet. 2018;21(1):33–38. doi:10.2478/bjmg-2018-0007
  • Alghobashy AA, Elsharawy SA, Alkholy UM, et al. B 2 adrenergic receptor gene polymorphism effect on childhood asthma severity and response to treatment. Pediatr Res. 2018;83(3):597–605. doi:10.1038/pr.2017.30429658513
  • Toraih EA, Hussein MH, Ibrahim A, et al. Beta2-adrenergic receptor variants in children and adolescents with bronchial asthma. Front Biosci (Elite Ed). 2019;11:61–78.30468638
  • Sordillo JE, McGeachie M, Lutz SM, et al. Longitudinal analysis of bronchodilator response in asthmatics and effect modification of age-related trends by genotype. Pediatr Pulmonol. 2019;54(2):158–164. doi:10.1002/ppul.v54.230585438
  • Himes BE, Jiang X, Hu R, et al. Genome-wide association analysis in asthma subjects identifies SPATS2L as a novel bronchodilator response gene. PLoS Genet. 2012;8(7):e1002824. doi:10.1371/journal.pgen.100282422792082
  • Israel E, Lasky-Su J, Markezich A, et al. Genome-wide association study of short-acting β2-agonists. A novel genome-wide significant locus on chromosome 2 near ASB3. Am J Respir Crit Care Med. 2015;191(5):530–537. doi:10.1164/rccm.201408-1426OC25562107
  • McDaneld TG, Hancock DL, Moody DE. Altered mRNA abundance of ASB15 and four other genes in skeletal muscle following administration of β-adrenergic receptor agonists. Physiol Genomics. 2004;16(2):275–283. doi:10.1152/physiolgenomics.00127.200314645738
  • Spear ML, Hu D, Pino-Yanes M, et al. A genome-wide association and admixture mapping study of bronchodilator drug response in African Americans with asthma. Pharmacogenomics J. 2019;19(3):249–259. doi:10.1038/s41397-018-0042-430206298
  • Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009;5(6):e1000529. doi:10.1371/journal.pgen.100052919543373
  • Ricciardolo FLM. Multiple roles of nitric oxide in the airways. Thorax. 2003;58(2):175–182. doi:10.1136/thorax.58.2.17512554905
  • Kanazawa H, Hirata K, Yoshikawa J. Nitrogen oxides reduce albuterol-induced bronchodilation in patients with bronchial asthma. Respiration. 2002;69(6):490–495. doi:10.1159/00006646612457000
  • Mak ACY, White MJ, Eckalbar WL, et al. Whole-Genome sequencing of pharmacogenetic drug response in racially diverse children with asthma. Am J Respir Crit Care Med. 2018;197(12):1552–1564. doi:10.1164/rccm.201712-2529OC29509491
  • Lee JH, McDonald ML, Cho MH, et al. DNAH5 is associated with total lung capacity in chronic obstructive pulmonary disease. Respir Res. 2014;15:97. doi:10.1186/s12931-014-0097-y25134640
  • Ramasamy A, Curjuric I, Coin LJ, et al. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J Allergy Clin Immunol. 2011;128(5):996–1005. doi:10.1016/j.jaci.2011.08.03022036096
  • Hersch M, Peter B, Kang HM, et al. Mapping genetic variants associated with beta-adrenergic responses in inbred mice. PLoS One. 2012;7(7):e41032. doi:10.1371/journal.pone.004103222859963
  • Kachroo P, Hecker J, Chawes B, et al. Whole genome sequencing identifies CRISPLD2 as a lung function gene in children with asthma. Chest. 2019;156(6):1068–1079. doi:10.1016/j.chest.2019.08.220231557467
  • Zhang H, Kho AT, Wu Q, et al. CRISPLD2 (LGL1) inhibits proinflammatory mediators in human fetal, adult, and COPD lung fibroblasts and epithelial cells. Physiol Rep. 2016;4(17):e12942. doi:10.14814/phy2.1294227597766
  • Zhang H, Sweezey NB, Kaplan F. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2015;308(4):L391–L402. doi:10.1152/ajplung.00119.201425480331
  • Himes BE, Jiang X, Wagner P, et al. RNA-Seq transcriptome profiling identifies CRISPLD2 as a glucocorticoid responsive gene that modulates cytokine function in airway smooth muscle cells. PLoS One. 2014;9(6):e99625. doi:10.1371/journal.pone.009962524926665
  • Yan D, Hamed O, Joshi T, et al. Analysis of the indacaterol-regulated transcriptome in human airway epithelial cells implicates gene expression changes in the adverse and therapeutic effects of β2-adrenoceptor agonists. J Pharmacol Exp Ther. 2018;366(1):220–236. doi:10.1124/jpet.118.24929229653961
  • Keenan CR, Radojicic D, Li M, Radwan A, Stewart AG. Heterogeneity in mechanisms influencing glucocorticoid sensitivity: the need for a systems biology approach to treatment of glucocorticoid-resistant inflammation. Pharmacol Ther. 2015;150:81–93. doi:10.1016/j.pharmthera.2015.01.00625596317
  • Lavorini F, Magnan A, Christophe Dubus J, et al. Effect of incorrect use of dry powder inhalers on management of patients with asthma and COPD. Respir Med. 2008;102(4):593–604. doi:10.1016/j.rmed.2007.11.00318083019
  • Laforest L, Belhassen M, Devouassoux G, Didier A, Ginoux M, Van Ganse E. Long-term inhaled corticosteroid adherence in asthma patients with short-term adherence. J Allergy Clin Immunol Pract. 2016;4(5):890–899.e2. doi:10.1016/j.jaip.2016.07.00827587320
  • Ramratnam SK, Bacharier LB, Guilbert TW. Severe asthma in children. J Allergy Clin Immunol Pract. 2017;5(4):889–898. doi:10.1016/j.jaip.2017.04.03128689839
  • Huang YJ, Nariya S, Harris JM, et al. The airway microbiome in patients with severe asthma: associations with disease features and severity. J Allergy Clin Immunol. 2015;136(4):874–884. doi:10.1016/j.jaci.2015.05.04426220531
  • Durack J, Lynch SV, Nariya S, et al. Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol. 2017;140(1):63–75. doi:10.1016/j.jaci.2016.08.05527838347
  • Denner DR, Sangwan N, Becker JB, et al. Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol. 2016;137(5):1398–1405.e3. doi:10.1016/j.jaci.2015.10.01726627545
  • Goleva E, Jackson LP, Harris JK, et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med. 2013;188(10):1193–1201. doi:10.1164/rccm.201304-0775OC24024497
  • Licari A, Brambilla I, Marseglia A, De Filippo M, Paganelli V, Marseglia GL. Difficult vs. severe asthma: definition and limits of asthma control in the pediatric population. Front Pediatr. 2018;6:170. doi:10.3389/fped.2018.0017029971223
  • Sood N, Connolly JJ, Mentch FD, et al. Leveraging electronic health records to assess the role of ADRB2 single nucleotide polymorphisms in predicting exacerbation frequency in asthma patients. Pharmacogenet Genomics. 2018;28(11):256–259. doi:10.1097/FPC.000000000000035530334910
  • Farzan N, Vijverberg SJ, Hernandez-Pacheco N, et al. 17q21 variant increases the risk of exacerbations in asthmatic children despite inhaled corticosteroids use. Allergy Eur J Allergy Clin Immunol. 2018;73(10):2083–2088. doi:10.1111/all.2018.73.issue-10
  • Dijk FN, Vijverberg SJ, Hernandez‐Pacheco N, et al. IL1RL1 gene variations are associated with asthma exacerbations in children and adolescents using inhaled corticosteroids. Allergy. 2019. doi:10.1111/all.14125
  • Karimi L, Vijverberg SJH, Farzan N, Ghanbari M, Verhamme KMC, Maitland‐van der Zee AH. FCER2 T2206C variant associated with FENO levels in asthmatic children using inhaled corticosteroids: the PACMAN study Clin Exp Allergy. 2019;49(11):1429–1436. doi:10.1111/cea.1346031309641
  • Dragicevic S, Kosnik M, Divac Rankov A, et al. The variants in the 3′ untranslated region of the matrix metalloproteinase 9 gene as modulators of treatment outcome in children with asthma. Lung. 2018;196(3):297–303. doi:10.1007/s00408-018-0113-y29600353
  • Wan Z, Tang Y, Song Q, et al. Gene polymorphisms in VEGFA and COL2A1 are associated with response to inhaled corticosteroids in children with asthma. Pharmacogenomics. 2019;20(13):947–955. doi:10.2217/pgs-2019-003631486735
  • Wang X, Li Q, Liu R, et al. ADRB2 Arg16Gly polymorphism and pulmonary function response of inhaled corticosteroids plus long-acting beta agonists for asthma treatment: a systematic review and meta-analysis. Can Respir J. 2018;2018:5712805.29670675
  • Moffatt MF, Gut IG, Demenais F, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363(13):1211–1221. doi:10.1056/NEJMoa090631220860503
  • Ferreira MAR, Mathur R, Vonk JM, et al. Genetic architectures of childhood- and adult-onset asthma are partly distinct. Am J Hum Genet. 2019;104(4):665–684. doi:10.1016/j.ajhg.2019.02.02230929738
  • Berce V, Kozmus CEP, Potočnik U. Association among ORMDL3 gene expression, 17q21 polymorphism and response to treatment with inhaled corticosteroids in children with asthma. Pharmacogenomics J. 2013;13(6):523–529. doi:10.1038/tpj.2012.3622986918
  • Vicente CT, Revez JA, Ferreira MAR. Lessons from ten years of genome-wide association studies of asthma. Clin Transl Immunol. 2017;6(12):e165. doi:10.1038/cti.2017.54
  • Grotenboer NS, Ketelaar ME, Koppelman GH, Nawijn MC. Decoding asthma: translating genetic variation in IL33 and IL1RL1 into disease pathophysiology. J Allergy Clin Immunol. 2013;131(3):856–865. doi:10.1016/j.jaci.2012.11.02823380221
  • Chan MA, Gigliotti NM, Aubin BG, Rosenwasser LJ. FCER2 (CD23) asthma-related SNP yields increased IgE binding and Egr-1 expression in human B cells. Am J Respir Cell Mol Biol. 2013;50(2):263–269.
  • Rogers AJ, Tantisira KG, Fuhlbrigge AL, et al. Predictors of poor response during asthma therapy differ with definition of outcome. Pharmacogenomics. 2009;10(8):1231–1242. doi:10.2217/pgs.09.8619663668
  • Tantisira KG, Silverman ES, Mariani TJ, et al. FCER2: a pharmacogenetic basis for severe exacerbations in children with asthma. J Allergy Clin Immunol. 2007;120(6):1285–1291. doi:10.1016/j.jaci.2007.09.00517980418
  • Koster ES, Maitland-van Der Zee AH, Tavendale R, et al. FCER2 T2206C variant associated with chronic symptoms and exacerbations in steroid-treated asthmatic children. Allergy Eur J Allergy Clin Immunol. 2011;66(12):1546–1552. doi:10.1111/j.1398-9995.2011.02701.x
  • Weitoft M, Andersson C, Andersson-Sjöland A, et al. Controlled and uncontrolled asthma display distinct alveolar tissue matrix compositions. Respir Res. 2014;15:67. doi:10.1186/1465-9921-15-6724950767
  • Lee CG, Link H, Baluk P, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-mediated sensitization and inflammation in the lung. Nat Med. 2004;10(10):1095–1103. doi:10.1038/nm110515378055
  • Mougey EB, Chen C, Tantisira KG, et al. Pharmacogenetics of asthma controller treatment. Pharmacogenomics J. 2013;13(3):242–250. doi:10.1038/tpj.2012.522370858
  • Hernandez-Pacheco N, Farzan N, Francis B, et al. Genome-wide association study of inhaled corticosteroid response in admixed children with asthma. Clin Exp Allergy. 2019;49(6):789–798. doi:10.1111/cea.1335430697902
  • Levin AM, Gui H, Hernandez-Pacheco N, et al. Integrative approach identifies corticosteroid response variant in diverse populations with asthma. J Allergy Clin Immunol. 2019;143(5):1791–1802. doi:10.1016/j.jaci.2018.09.03430367910
  • Janahi EM, McGarvey MJ. The inhibition of hepatitis B virus by APOBEC cytidine deaminases. J Viral Hepat. 2013;20(12):821–828. doi:10.1111/jvh.2013.20.issue-1224304451
  • Desimmie BA, Delviks-Frankenberrry KA, Burdick RC, Qi D, Izumi T, Pathak VK. Multiple APOBEC3 restriction factors for HIV-1 and one vif to rule them all. J Mol Biol. 2014;426(6):1220–1245. doi:10.1016/j.jmb.2013.10.03324189052
  • Walsh GM. Eosinophil granule proteins and their role in disease. Curr Opin Hematol. 2001;8(1):28–33. doi:10.1097/00062752-200101000-0000611138623
  • Gon Y, Ito R, Hattori T, et al. Serum eosinophil-derived neurotoxin: correlation with persistent airflow limitation in adults with house-dust mite allergic asthma. Allergy Asthma Proc. 2015;36(6):e113–e120. doi:10.2500/aap.2015.36.388426534742
  • Wang RS, Croteau-Chonka DC, Silverman EK, Loscalzo J, Weiss ST, Hall KT. Pharmacogenomics and Placebo response in a randomized clinical trial in asthma. Clin Pharmacol Ther. 2019;106(6):1261–1267. doi:10.1002/cpt.164631557306
  • Wain LV, Shrine N, Artigas MS, et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet. 2017;49(3):416–425. doi:10.1038/ng.378728166213
  • Shrine N, Guyatt AL, Erzurumluoglu AM, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet. 2019;51(3):481–493. doi:10.1038/s41588-018-0321-730804560
  • Kichaev G, Bhatia G, Loh PR, et al. Leveraging polygenic functional enrichment to improve GWAS power. Am J Hum Genet. 2019;104(1):65–75. doi:10.1016/j.ajhg.2018.11.00830595370
  • Lutz SM, Cho MH, Young K, et al. A genome-wide association study identifies risk loci for spirometric measures among smokers of European and African ancestry. BMC Genet. 2015;16:138. doi:10.1186/s12863-015-0299-426634245
  • Wain LV, Shrine N, Miller S, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): A genetic association study in UK Biobank. Lancet Respir Med. 2015;3(10):769–781. doi:10.1016/S2213-2600(15)00283-026423011
  • Ferreira MAR, Matheson MC, Duffy DL, et al. Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet. 2011;378(9795):1006–1014. doi:10.1016/S0140-6736(11)60874-X21907864
  • Almoguera B, Vazquez L, Mentch F, et al. Identification of four novel loci in asthma in European American and African American Populations. Am J Respir Crit Care Med. 2017;195(4):456–463. doi:10.1164/rccm.201604-0861OC27611488
  • Tantisira KG, Lasky-Su J, Harada M, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med. 2011;365(13):1173–1183. doi:10.1056/NEJMoa091135321991891
  • Salhi M, Lahmar O, Salah MO. et al. GLCCI1 and STIP1 variants are associated with asthma susceptibility and inhaled corticosteroid response in a Tunisian population. J Asthma;2019 1–10. doi:10.1080/02770903.2019.1666867
  • Rijavec M, Žavbi M, Lopert A, Fležar M, Korošec P. GLCCI1 polymorphism rs37973 and response to treatment of asthma with inhaled corticosteroids. J Investig Allergol Clin Immunol. 2018;28(3):165–171. doi:10.18176/jiaci
  • Tse SM, Krajinovic M, Chauhan BF, et al. Genetic determinants of acute asthma therapy response in children with moderate-to-severe asthma exacerbations. Pediatr Pulmonol. 2019;54(4):378–385. doi:10.1002/ppul.v54.430644648
  • Farzan N, Vijverberg SJ, Andiappan AK, et al. Rationale and design of the multiethnic pharmacogenomics in childhood asthma consortium. Pharmacogenomics. 2017;18(10):931–943. doi:10.2217/pgs-2017-003528639505